期刊文献+

Numerical exploration of new features on three-dimensional transition of a cylinder wake

Numerical exploration of new features on three-dimensional transition of a cylinder wake
原文传递
导出
摘要 The three-dimensional transition of the wake flow behind a circular cylinder is studied in detail by direct numerical simulations using 3D incompressible N-S equations for Reynolds number ranging from 200 to 300. New features and vortex dynamics of the 3D transition of the wake are found and investigated. At Re = 200, the flow pattern is characterized by mode A instability. However, the spanwise characteristic length of the cylinder determines the transition features. Particularly for the specific spanwise characteristic length linear stable mode may dominate the wake in place of mode A and determine the spanwise phase difference of the primary vortices shedding. At Re = 250 and 300 it is found that the streamwise vortices evolve into a new type of mode "dual vortex pair mode" downstream. The streamwise vortex structures switch among mode A, mode B and dual vortex pair mode from near wake to downstream wake. At Re = 250, an independent low frequency fm in addition to the vortex shedding frequency fs is identified. Frequency coupling between fm and fs occurs. These result in the irregularity of the temporal signals and become a key feature in the transition of the wake. Based on the formation analysis of the streamwise vorticity in the vicinity of cylinder, it is suggested that mode A is caused by the emergence of the spanwise velocity due to three dimensionality of the incoming flow past the cylinder. Energy distribution on various wave numbers and the frequency variation in the wake are also described. The three-dimensional transition of the wake flow behind a circular cylinder is studied in detail by direct numerical simulations using 3D incompressible N-S equations for Reynolds number ranging from 200 to 300. New features and vortex dynamics of the 3D transition of the wake are found and investigated. At Re = 200, the flow pattern is characterized by mode A instability. However, the spanwise characteristic length of the cylinder determines the transition features. Particularly for the specific spanwise characteristic length linear stable mode may dominate the wake in place of mode A and determine the spanwise phase difference of the primary vortices shedding. At Re = 250 and 300 it isfound that the streamwise vortices evolve into a new type of mode--'dual vortex pairmode' downstream. The streamwise vortex structures switch among mode A, mode B and dual vortex pair mode from near wake to downstream wake. At Re = 250, an independent low frequency fm in addition to the vortex shedding frequency fs is identified. Frequency coupling between fm and fs occurs. These result in the irregularity of the temporal signals and become a key feature in the transition of the wake. Based on the formation analysis of the streamwise vorticity in the vicinity of cylinder, it is suggested that mode A is caused by the emergence of the spanwise velocity due to three dimensionality of the incoming flow past the cylinder. Energy distribution on various wave numbers and the frequency variation in the wake are also described.
出处 《Science China Mathematics》 SCIE 2004年第z1期69-80,共12页 中国科学:数学(英文版)
关键词 cylinder wake 3D transition Fourier-spectral-spectral-element method direct numerical simulation (DNS). cylinder, wake, 3D transition, Fourier-spectral-spectral-element method, direct numerical simulation (DNS).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部