期刊文献+

具有时滞和避难所的比率型-捕食者-两竞争食饵模型 被引量:3

A Ratio-dependent One Predator-two Competing Prey Model with Delays and Refuges
下载PDF
导出
摘要 讨论了一类具有时滞和避难所的比率型非自治三种群捕食者-食饵模型,运用Liapunov函数方法得到了该模型一致持久和全局渐近稳定的充分条件;并讨论了其周期系统正周期解的存在唯一性和全局吸引性. In this paper,we employ Liapunov method to study the persistence and global asymptotic stable of positive solutions for the ecologic system of the nonaugonomous ratio-dependent predator-prey system with delays and refuges.Then we discuss the existence,uniqueness and stability of a positive periodic solution for corresponding periodic system.
出处 《应用数学》 CSCD 北大核心 2010年第1期198-203,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目(60774036) 孝感学院青年基金资助(Z200803)
关键词 比率型捕食系统 时滞 避难所 持久性 全局渐近稳定 Ratio-dependent predator-prey system Delay Refuge Persistence Global asymptotic stability
  • 相关文献

参考文献3

二级参考文献17

  • 1Arditi R, Ginzburg L R. Coupling in predator-pyey dynamics: ratio-dependence[J]. J Theoretical Biology,1989,139:311-326.
  • 2Beretta E,Kuang Y. Global analyses in some delayed ratio-dependedt predator-prey systems[J]. Nonlinear Analysis T M A,1998,32:381-408.
  • 3Hsu S B, Hwang T W. Kuang Y. Global analysis of the Michaelis-Menten type ratio-dependent predatorprey system [J]. J Math Biol ,2001,42 : 489-506.
  • 4Hsu S B, Hwang T W, Kuang Y. Rich dynamics of a ratio-dependent one prey two predator model [J]. J Math Biol. ,2001,43:377-396.
  • 5Kuang Y. Rich dynamics of Gause-type ratio-dependent predator-prey system[J]. The Fields Institute Communications, 1993,21: 325 - 337.
  • 6Kuang Y,Beretta E. Global qualitative analysis of a ratio-dependent predator-prey system[J]. J Math Biol ,1998,36:389-406.
  • 7Berryman, A.A. The origins and evolution of predator-prey theory. Ecology, 75:1530-1535 (1992)
  • 8Ding, S.H. On a kind of predator-prey system. SIAM Journal on Mathematical Analysis, 20:1426-1435(1989)
  • 9Freedman, H,I, Deterministic mathematical models in population ecology. Marcel Dekker, New York, 1980
  • 10Gaines, R,E,, Mawhin, J.L. Coincidence degree and nonlinear differential equation. Springer-Verlag, Berlin,1977

共引文献14

同被引文献19

  • 1徐国明,陈向华.具有避难所的三种群捕食系统的持久性和周期解[J].阴山学刊(自然科学版),2009,23(1):14-17. 被引量:4
  • 2朱晶,刘会民.具有避难所的两种群捕食者—食饵系统持久性[J].西北民族大学学报(自然科学版),2006,27(2):1-3. 被引量:3
  • 3Chen Fengde, Chen Yuming, Shi Jinlin. Stability of the boundary solution of a nonau- tonomous predator-prey system with the Beddington-DeAngelis functional response[J]. J Math Anal Appl, 2008, 344(2): 1057-1067.
  • 4Chen F D, Chen L J, Xie X D. On a Leslie-Cower predator-prey model incorporating a prey refuge [ J ]. Nonlinear Anal:Real World Appl,2009,10 ( 5 ) :2 905 - 2 908.
  • 5Chen F D. On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay [ J ]. J Comput Appl Math, 2005,180(1 ) :33 -49.
  • 6Zhaozhi Ma,Fengde Chen,Chengqiang Wu,Wanlin Chen.Dynamic behaviors of a Lotka-Volterra predator-prey model incorporating a prey refuge and predator mutual interference[J].Applied Mathematics and Computation.2013
  • 7Fengde Chen,Zhaozhi Ma,Huiying Zhang.Global asymptotical stability of the positive equilibrium of the Lotka–Volterra prey–predator model incorporating a constant number of prey refuges[J].Nonlinear Analysis: Real World Applications.2012(6)
  • 8Shengbin Yu,Zhen Jin.Global Asymptotic Stability of a Predator-Prey Model with Modified Leslie-Gower and Holling-Type II Schemes[J].Discrete Dynamics in Nature and Society.2012
  • 9Sahabuddin Sarwardi,Mainul Haque,Prashanta Mandal.Ratio-dependent predator–prey model of interacting population with delay effect[J].Nonlinear Dynamics.2012(3)
  • 10Fengde Chen,Liujuan Chen,Xiangdong Xie.On a Leslie–Gower predator–prey model incorporating a prey refuge[J].Nonlinear Analysis: Real World Applications.2009(5)

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部