期刊文献+

伪双曲方程的新混合有限元方法(英文) 被引量:8

A New Mixed Finite Element Method for Pseudo-Hyperbolic Equation
下载PDF
导出
摘要 构造分析一类二阶伪双曲方程的H1-Galerkin扩展混合有限元方法,该方法采用了扩展混合有限元方法和H1-Galerkin混合有限元方法相结合的技巧.新的格式同时保持了扩展混合有限元方法和H1-Galerkin混合有限元方法的优点.该混合格式与标准的混合格式相比能同时逼近三个变量:未知函数、梯度和流量(系数乘以梯度),并且不必满足LBB相容性条件. An H1-Galerkin expanded mixed finite element method which combines expanded mixed finite element and H1-Galerkin mixed finite element method is constructed and analyzed for a class of second order pseudo-hyperbolic equations.The new formulation not only keeps the advantages of expanded mixed formulation but also keeps the advantages of H1-Galerkin mixed formulation.The new mixed formulation expands the standard mixed formulation in the sense that three variables are explicitly treated:the scalar unknown,its...
作者 刘洋 李宏
出处 《应用数学》 CSCD 北大核心 2010年第1期150-157,共8页 Mathematica Applicata
基金 Supported by the National Natural Science Fund(10601022) NSF of Inner Mongolia Autonomous Region(200607010106) 513 Fund and Youth Science Fund (ND0702) in Inner Mongolia University
关键词 伪双曲方程 H1-Galerkin扩展混合有限元方法 半离散和全离散格式 误差估计 Pseudo-hyperbolic equations H1-Galerkin expanded mixed finite element method Semidiscrete and fully discrete schemes Error estimates
  • 相关文献

参考文献1

二级参考文献16

  • 1Z. Chen, Expand Mixed Finite Element Method For Linear Second Elliptic Problems, M^2AN Modelisation mathgmatique et Analyse numgrique, 32 (1998), 479-499.
  • 2M.R. Todd, P.M. O'Dell, G.J. Hirasaki, Methods for increased accuracy in numerical reservoir simulations, Soc. Petrol. Engry. J., 12 (1972), 929-963.
  • 3J. Douglas, Jr., T.F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures,SIAM J. Nurner. Anal., 19 (1982), 871-885.
  • 4C. Johnson, Streamline diffusion methods for problems in fluid mechanics, in Finite Elements in fluids VI, Wiley, New York, 1986.
  • 5P.A. Raviart, T.M. Thomas, A mixed finite element methods for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Math. Vol. 606, Springer-Verlag,Berlin, 1977, 292-315.
  • 6D.N. Arnolds, L.R. Scott, M. Vogelus, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygonal, Ann. Scuola. Norm. Sup. Pisa, C1. Sciserie. IVXV, 1988,169-192.
  • 7J. Douglas, Jr., J.E. Roberts, Global estimates for mixed methods for second order elliptic equations,Math. Comp., 44 (1985), 39-52.
  • 8D.P. Yang, Analysis of least-squares mixed finite element methods for nonlinear nonstationary convection-diffusion problems, Math. Comp., 69, 2000, 929-963.
  • 9F. Brezzi, J. Douglas Jr., R. Duran and M. Fortin, Mixed finite elements for second order elliptic problems in three variavles, Numer Math., 51 (1987), 237-250.
  • 10F. Brezzi, J. Douglas Jr. and L. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47 (1985), 217-235.

共引文献6

同被引文献36

引证文献8

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部