期刊文献+

基于模糊遗传算法的自融资有效投资组合研究 被引量:5

THE RESSEARCH ON SELF-FINANCING EFFECTIVE PORTFOLIO BASED ON FUZZY GENETIC ALGORITHM
下载PDF
导出
摘要 在马克维茨投资组合的均值一方差模型框架下,给出限制投资数量的自融资投资组合优化模型.把预期收益率不等式约束转化为模糊约束,采用一种通过惩罚因子,对适应度函数进行修正的模糊遗传算法来求解模型.在理论上,这种算法能够将最优基因较完整地遗传到下一代,有效地避免了早熟现象,可以得到更好的适应度函数值.在实际应用中,对一具体自融资有效投资组合实例进行计算,结果表明:本文所提出的模糊遗传算法是可行的、有效的,具有更好的优化结果. Based on Markowitz s mean-variance portfolio model,we proposed a self-financing portfolio optimal model with constraints of invest proportions.By using a penalty factor,the Fuzzy Genetic Algorithm was applied to solve the model with rectified fitness function,in which the inequality constraint of expected return was changed into a fuzzy constraint.In theory,in order to avoid the early maturity,the optimal gene can be inherited to next generation perfectly.As a result,a better fitness function value will be ...
作者 邓雪 李荣钧
出处 《经济数学》 北大核心 2009年第4期91-96,共6页 Journal of Quantitative Economics
基金 教育部高等学校博士点专项科研基金资助项目(20060561002) 广东省软科学研究资助项目(2008B070800012)
关键词 投资组合 自融资 模糊遗传算法 半剃度模糊数 portfolio investment self-financing fuzzy genetic algorithm half-trapezoid fuzzy number
  • 相关文献

参考文献3

二级参考文献23

  • 1Markowitz,H. ,Portfoli selection[J] .Journal of Finance,7(1952)77~91.
  • 2Markowitz, H., Portfolio selection: efficient diversification of investments (2ed Edition in 1991). New York: Basil Blackwell, 1959.
  • 3Sharpe,W. F., A simplified model of portfolio analysis. Management Science, 1963(1) :277 ~ 293.
  • 4Konno H,Yamazaki H. Mean-variance deviation portfolio optimization model and its applications to Tokyo stock market [J]. Management Sci., 1991,37(5) :519 ~ 531.
  • 5Daniel Kahneman, Amos Tversky. Choices, values, and frames [J].American Psychologist 39(1984)341 ~ 350.
  • 6Kahneman D., Amos Tversky. Prospect theory: an analysis of decision under risk [J]. Econometrica 47: 2 (1979) 263 ~ 291.
  • 7Jia J. ,James S. Dyer, A standand measure of risk and risk-value models [J]. Management Sci., 1996,42(12) 1691 ~ 1705.
  • 8Jia J., James S. Dyer, John C. Butler, Generalized disappointment models[J]. Journal of Risk and Uncertainty, 2001,22 (1)59 Daniel Kahneman and Amos Tversky, 59 ~ 78.
  • 9James S. Dyer,J. Jia. Relative risk-value models [J]. European Journal of Operational Research 103(1997)170~ 185.
  • 10Tversky, A., D. Kahneman. Advances in prospect theory: cumulative representation of uncertainty [J]. Journal of Risk and Uncertainty,1992,5,297~323.

共引文献15

同被引文献45

  • 1陈铁英,张忠桢.自融资均值方差投资组合模型的旋转算法[J].系统工程理论与实践,2004,24(6):98-103. 被引量:8
  • 2国嘉,王瑞敏,王家海,张忠民.基于遗传算法的神经网络学习方法[J].计算机与数字工程,2004,32(5):98-101. 被引量:9
  • 3韩苗,周圣武,仓定帮.基于熵的投资组合模糊优化模型[J].运筹与管理,2005,14(6):126-129. 被引量:6
  • 4王安民,刘翔.证券投资组合模型分析[J].西安电子科技大学学报,1996,23(4):468-473. 被引量:6
  • 5MARKOWITZ H. Portfolio selection [J]. Journal of Finance, 1952, 7(1): 77-91.
  • 6Soleimani H, Golmakani H R. Markowitz-based portfolio selection with minimum transaction lots, cardinality constraints and regarding sector capitalization using genetic algorithm[J]. Expert Systems with Applications, 2009, 36(3): 5058-5063.
  • 7Branke J, Scheckenbach B. SchmeckPortfolio optimization with an envelope-based multi-objective evolutionary algorithm[J]. European Journal of Operational Research, 2009, 199(3): 684-693.
  • 8Katz M L, Shapiro C. Network externalities, competition, and compatibility [J]. American Economic Review, 1985, 75(3): 424-440.
  • 9Bob Korkie, Harry J Turtle. A mean-variance analysis of self-financing portfolios [J]. Management Science, 2002, 48(3): 427-443.
  • 10Kennedy J and Eberhart R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Piscataway, USA, 1995: 1942-1948.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部