期刊文献+

结合GO体系信息与芯片数据构建肿瘤特征基因网络

Construction of Regulatory Network of Tumor Genes by Combing Information of Microarray and Gene Ontology
下载PDF
导出
摘要 我们提出了一种新的肿瘤特征基因调控网络构建方法,首先用P-tree方法快速筛选肿瘤特征基因集;然后结合GO体系中对基因的注释信息与芯片数据信息对特征基因进行聚类;最后通过文献挖掘方法,以聚类获得的每个功能类中的基因为核心,建立肿瘤特征基因功能类网络模块。实验结果表明:本研究的方法明显提高了特征基因筛选速度,网络构建基于生物功能过程进一步细化,同时通过文献挖掘方法在网络中补充入大量与肿瘤特征基因发生直接或间接关系的基因,网络内容更加丰富与条理化。通过结合芯片数据,GO体系与相关文献中信息构建肿瘤特征基因调控网络能够构建更为细致、丰富,并针对具体调控过程的网络模块,为肿瘤的产生,发展与转移过程分析提供有效的指导。 We presented a novel method on construction of regulatory networks of feature genes about tumor.Firstly the feature genes about tumor based on P-tree was rapidly selected;then the feature genes were clustered on combination of GO annotation and microarray data;finally the functional modules of regulatory network were constructed by text mining,and the feature genes of every cluster was made the core of network.The result of experiments demonstrated that our method greatly reduced the time of feature genes′ ...
出处 《生物医学工程研究》 2009年第4期237-241,共5页 Journal Of Biomedical Engineering Research
基金 国家自然科学基金资助项目(60835005)
关键词 GO体系 芯片数据聚类 特征基因 调控网络 功能类 Gene Ontology Clustering microarray data Feature genes Regulatory networks Functional classes
  • 相关文献

参考文献1

二级参考文献15

  • 1Li X., Rao S.Q. et al.. Genetic mapping of complex discrete human diseases by discriminant analysis. Progress in Natural Science, 2002, 12(6):27~33
  • 2Alon U., Barkai N., Notterman D.A., Gish K. et al.. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, 1999,96(12):6745~6750
  • 3DeRisi J.L. et al.. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science, 1997, 278:680~685
  • 4Golub T.R. et al.. Molecular Classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 1999, 286:531~537
  • 5Cmill J.C. et al.. A new approach for filtering noise from high-density oligonuleotide microarray datasets. Nucleic Acids Research, 2001, 29(15):15~72
  • 6Hall M.. Correlation-based feature selection for machine learning[Ph.D. dissertation]. Department of Computer Science, University of Waikato, Hamilton, 1998
  • 7Blum A.L., Langley P.. Selection of relevant features and examples in machineearning. Artificial Intelligence, 1997, 97(1~2):245~271
  • 8Kohavi R., John G.H.. Wrappers for feature subset selection. Artificial Intelligence, 1997, 97(1~2):273~324
  • 9Xing E.P., Jordan M.I., Karpy R.M.. Feature selection for high-dimensional genomic microarray data. In:Proceedings of International Conference on Machine Learning, Western Massachusetts, 2001,601~608
  • 10Dietterich T.G.. Ensemble methods in machine learning. In:Proceedings of the 1st International Workshop on Multiple Classifier Systems.In: Roli F. ed.. Lecture Notes in Computer Science. New York: Springer, 2000, 1~15

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部