期刊文献+

极小线性序紧化和κ仿紧性(英文)

MINIMAL LINEARLY ORDERED COMPACTIFICATION ANDκ-PARACOMPACTNESS
下载PDF
导出
摘要 在本文中我们首先对任意一个广义序拓扑空间构造了一个极小线性序紧化,然后用极小线性序紧化来刻画广义序拓扑空间的k-仿紧性. In this paper,we construct a minimal linearly ordered compactification for any GO-space and characterizeκ-paracompactness of GO-spaces by minimal linearly ordered compactification.
出处 《南京大学学报(数学半年刊)》 CAS 2009年第2期155-163,共9页 Journal of Nanjing University(Mathematical Biquarterly)
基金 Supported by NSFC,Project 10971092
关键词 极小线性序紧化 κ仿紧性 minimal linearly ordered compactification κ-paracompact
  • 相关文献

参考文献10

  • 1Engleking R.General Topology.Sigma Series in Pure Mathematics[]..1989
  • 2Faber M J.Metrizability in Generalized Ordered Spaces[].MathCentre Tracts no.
  • 3Kemoto N.Stationary Subspaces in Ordered Spaces[].Bulletin of the Australian Mathematical Society.1989
  • 4Lutzer D.Ordered Topological Spaces[].Surveys in General Topology.
  • 5Engelking,R.,Lutzer,D.Paracompactness in ordered spaces[].Fundamenta Mathematicae.1977
  • 6Gillman,L.,Henriksen,M.Concerning rings of continuous functions[].Transactions of the American Mathematical Society.1954
  • 7Kaufman,R.Ordered sets and compact spaces[].Colloquium Mathematicum.1967
  • 8Kemoto N.Normality of products of GO-spaces and cardinal[].Topology Proceedings.1993
  • 9Kemoto N.The shrinking property and the B-property in ordered spaces[].Fundamenta Mathematicae.1990
  • 10Lutzer,D. J.On generalized ordered spaces[].Diss Math.1971

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部