期刊文献+

求解Burgers方程的特征中心型有限体积法 被引量:1

Characteristic-based Central FVM for Burgers Equation
下载PDF
导出
摘要 以Burgers方程为试验模型,提出一种新的有限体积法,空间上的离散采用中心型加权基本无振荡重构,时间上的离散采用数值积分。其中积分节点上的数值通量由特征理论回溯求解,保持了物理量沿特征方向传输的特性,计算量相对Runge-Kutta法明显减少。数值结果表明了方法的有效性和稳定性。 A new finite volume method for Burgers equation as tested model is proposed. The Central Weighted Essentially NonOscillatory finite volume reconstruction techniques and numerical quadratures are used to approximate spa tial derivatives and time derivative respectively. The numerical fluxes at quadrature nodes are evaluated by the characteristic theory which maintains the transportation of physical variables and remarkably reduces calculation in contrast to Runge-Kutta method. Numerical experiments illustrat...
作者 罗力 封建湖
机构地区 长安大学理学院
出处 《航空计算技术》 2010年第3期13-17,共5页 Aeronautical Computing Technique
基金 陕西省自然科学基金资助(2007F36)
关键词 BURGERS方程 有限体积法 特征理论 高分辨率 burgers equation finite volume method the characteristic theory high resolution
  • 相关文献

参考文献10

  • 1郭彦,刘儒勋.一维Euler方程的特征有限体积格式[J].应用数学和力学,2009,30(3):291-300. 被引量:4
  • 2陈嘉滨,季仲贞.半隐式半拉格朗日平方守恒计算格式的构造[J].大气科学,2004,28(4):527-535. 被引量:12
  • 3A A I Peer,A Gopaul,M Z Dauhoo,M Bhuruth.A new fourth-order non-oscillatory central scheme for hyperbolic conser-vation laws. Applied Numerical Mathematics . 2008
  • 4S Ii,F Xiao.CIP/multi-moment finite volume method for Euler equations:A semi-Lagrangian characteristic formula-tion. Journal of Computational Physics . 2007
  • 5Levy D,Puppo G,Russo G.Central WENO Schemes for Hyperbolic Systems of Conservation Laws. Mathematical Modeling and Numerical Analysis . 1999
  • 6Levy D,Puppo G,Russo G.Compact Central WENO Schemes for Multidimensional Conservation Laws. SIAM Journal on Scientific Computing . 2000
  • 7G.-S. Jiang,E. Tadmor.Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM Journal on Scientific and Statistical Computing . 1998
  • 8Balbas,J,E Tadmor,C.C.Wu.Non-oscillatory central schemes for one-and two-dimensional MHD equations.Ⅱ:High-order semi-discrete schemes. SIAM Journal on Scientific Computing . 2006
  • 9Qiu,J.,Shu,C.-W.On the construction, comparison, and local characteristic decomposition for high-order central WENO schemes. Journal of Computational Physics . 2002
  • 10Levy D,Puppo G,Russo G.A Fourth-Order Central WENO Schemes for Multidimensional Hyperbolic Systems of Conservation Laws. SIAM Journal on Scientific Computing . 2002

二级参考文献19

  • 1涂国华,袁湘江,陆利蓬.激波捕捉差分方法研究[J].应用数学和力学,2007,28(4):433-440. 被引量:10
  • 2Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes [J]. J Comput Phys , 1988,77(2) :439-471.
  • 3Shu C W, Osher S. Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ[J]. J Comput Phys, 1989,83( 1 ) :32-78.
  • 4Jiang G, Shu C W. Efficient implementation of weighted ENO schemes[J]. J Comput Phys, 1995,126 (1) : 202-228.
  • 5Levy D, Pupo G, Russo G. Compact central WENO schemes for multidimensional conservation laws[J].SIAMJSci Comput,2000,22(2) :656-672.
  • 6CapdeviUe G. A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes[ J]. J Comput Phys ,2008,227(5) :2977-3014.
  • 7HU Jun, GUO Shao-gang. Solution to Euler equations by high-resolution upwind compact scheme based on flux splitting[J]. Internat JNumerMeth F/u/ds,2008,56(11) :2139-2150.
  • 8Xiao F,Peng X. A convexity preserving scheme for conservative advection transport[J]. J Comput Phys, 2004,198(2) : 389-402.
  • 9Ii S,Xiao F. CIP/multi-moment finite volume method for Euler equations:A semi-Lagrangian characteristic formulation[J].J Comput Phys ,2007,222(2) :849-871.
  • 10Qiu J, Shu C W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method: one dimensional case[J].J Comput Phys, 2004,193( 1):115-135.

共引文献14

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部