期刊文献+

基于综合主成分及径向基网络的环境质量评价 被引量:3

Environmental Quality Assessment Based on Comprehensive Principal Component Analysis and Radial Basis Function Neutral Network Model
下载PDF
导出
摘要 运用综合主成分分析对监测数据进行处理,集成径向基函数人工神经网络(RBF-ANN),参考国家环境质量评价标准设定RBF的学习样本,从而构建区域环境质量综合评价模型,对安徽省合肥市新站综合开发试验区进行环境质量综合评价。实例分析结果表明,运用综合主成分法可以精准的统计出一个区域的环境综合数据,而且在matlab环境下运用RBF-ANN模型既可以准确,客观的评定环境质量的等级,又可以表现其环境污染的具体程度,能在同一评价等级内对不同环境质量的评价对象进行更加细微的污染程度的比较。结果表明,合肥市新站综合开发试验区环境综合质量介于轻度污染和中度污染的标准极限值之间,属于中度污染。 A comprehensive assessment model of regional environmental quality was built to investigate environmental quality of Xinzhan Comprehensive Developmental and Experimental Zone,Hefei,Anhui Province,which applied monitoring data processing with the method of comprehensive principal component analysis and a radial basis function artificial neural network(RBF-ANN)and leaning samples of RBF designed according to national standards of environmental quality assessment.The case study indicated that application of co...
出处 《环境科学与技术》 CAS CSCD 北大核心 2010年第7期196-200,共5页 Environmental Science & Technology
基金 安徽省自然科学基金(03045203) 国家自然科学基金(40771117)
关键词 环境质量综合评价 径向基网络 综合主成分分析 合肥新站区 comprehensive assessment of environmental quality radial basis function artificial neural network comprehensive principal component analysis Xinzhan Comprehensive Developmental and Experimental Zone
  • 相关文献

参考文献2

二级参考文献4

共引文献30

同被引文献27

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部