摘要
The transfer of information and signal velocity in an anomalous dispersion medium are studied. We propose that the discontinuous points in the envelop and its derivatives of any order are the information carried by a pulse different from others. The signal velocity will not exceed the speed of the shift of these discontinuous points. We study the propagation of pulses with a triangle envelop and with the envelop made up by three pieces of quadratic curve in dilute, anomalous dispersion gas with double gain lines. The discontinuous points of the envelop, its first derivative, and its second derivative are shown to propagate with vacuum speed of light c in the medium. A criterion has been suggested to determine theoretically whether the distortion of a pulse can be ignored.
The transfer of information and signal velocity in an anomalous dispersion medium are studied. We propose that the discontinuous points in the envelop and its derivatives of any order are the information carried by a pulse different from others. The signal velocity will not exceed the speed of the shift of these discontinuous points. We study the propagation of pulses with a triangle envelop and with the envelop made up by three pieces of quadratic curve in dilute, anomalous dispersion gas with double gain lines. The discontinuous points of the envelop, its first derivative, and its second derivative are shown to propagate with vacuum speed of lightc in the medium. A criterion has been suggested to determine theoretically whether the distortion of a pulse can be ignored.
基金
the National Natural Science Foundation of China(Grant Nos.10175070 & 10047004)