期刊文献+

U-Pb isotopic geochemistry of the post-collisional mafic-ultramafic rocks from the Dabie Mountains——Crust-mantle interaction and LOMU component 被引量:2

U-Pb isotopic geochemistry of the post-collisional mafic-ultramafic rocks from the Dabie Mountains——Crust-mantle interaction and LOMU component
原文传递
导出
摘要 The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are char-acterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first ob-served that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical char-acters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional ma-fic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust. The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are char-acterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first ob-served that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical char-acters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional ma-fic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.
出处 《Science China Earth Sciences》 SCIE EI CAS 2003年第4期320-332,共13页 中国科学(地球科学英文版)
基金 This research was supported by the National Natural Science Foundation of China(Grant No.49873006) Major State Basic Research Development Program(Grant No.1999075503) Chinese Academy of Sciences(Grant No.KZCXZ-107).
关键词 mafic-ultramafic rocks CRUST-MANTLE interaction U-PB ISOTOPIC geochemistry DABIE Mountains LOMU component. mafic-ultramafic rocks,crust-mantle interaction, U-Pb isotopic geochemistry, Dabie Mountains, LOMU component.
  • 相关文献

参考文献12

二级参考文献159

共引文献540

同被引文献65

引证文献2

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部