期刊文献+

Recollements of extension algebras 被引量:2

Recollements of extension algebras
原文传递
导出
摘要 Let A be a finite-dimensional algebra over arbitrary base fieldk. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensionalk-algebras B and C: then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C): Let A be a finite-dimensional algebra over arbitrary base field k. We prove: if the unbounded derived module category D-(Mod-A) admits symmetric recollement relative to unbounded derived module categories of two finite-dimensional k-algebras B and C:D-(Mod- B) ( ) D-(Mod- A) ( ) D-(Mod- C),then the unbounded derived module category D-(Mod - T(A)) admits symmetric recollement relative to the unbounded derived module categories of T(B) and T(C):D-(Mod - T(B)) ( ) D-(Mod - T(A)) ( ) D-(Mod - T(C)).
出处 《Science China Mathematics》 SCIE 2003年第4期530-537,共8页 中国科学:数学(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Grant No.10071062) the Committee of Education Foundation of Fujian(Grant No.K 2001032).
关键词 TRIVIAL extension algebras derived categories (symmetric) recollements partial TILTING complexes. trivial extension algebras derived categories (symmetric) recollements partial tilting complexes
  • 相关文献

参考文献3

  • 1Rickard,J.Morita theory for derived categories, J[].London Mathematical Society.1989
  • 2Koenig,S.Tilting complexes, perpendicular categories and recollements of derived module categories of rings,J.Pure and Appl[].Journal of Algebra.1991
  • 3Rickard,J.Derived categories and stable equivalence, J.Pure and Appl[].Journal of Algebra.1989

同被引文献24

  • 1LIN YaNan,LIN ZengQiang.One-point extension and recollement[J].Science China Mathematics,2008,51(3):376-382. 被引量:9
  • 2Grothendieck A. Groups and classes des categories abeliermes et trianguliers complexe parfaits[M]//LNM 589. New York: Springer-Verlag, 1977: 351-371.
  • 3Grothendieck A, Verdier J L. Theorie des topos (SGA 4, volume I) [M]//LNM 269. Berlin-New York: Springer-Verlag, 1972.299-519.
  • 4Beilinson A A, Bernstein J, Deligne P. Faisceaux pervers[J]. Asterisque, 1982, 100: 5-172.
  • 5Hugel L, Koenig S, Liu Q H. Recollements and tilting objects[J]. Journal of Pure and Applied Algebra, 2011, 215 ( 4 ) .420-438.
  • 6Chen H X, Xi C C. Good tilting modules and recollements of derived module categories[J]. Proc London Math Soc, 2012, 104( 5 ) .959-996.
  • 7Liu Q H, Vitoria J. T-structures via recollements for piecewise hereditary algebras[J]. Journal of Pure and Applied Algebra, 2012, 216( 4 ) :837-849.
  • 8Chen Q H, Lin Y N. Recollements of extension algebras[J]. Science in China: Series A, 2003, 46 ( 4 ):530-537.
  • 9Balmer P, Schlichting M. Idempotent completion of triangulated categories[J]. J Algebra, 2001, 236 ( 2 ) : 819-834.
  • 10Krause H. Derived categories, resolutions and Brown representability[M] //Contemporary Mathematics 436. Chicago: Amer Math Soc, 2007: 101-139.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部