期刊文献+

Hirzebruch X_y genera of the Hilbert schemes of surfaces by localization formula 被引量:1

Hirzebruch Xy genera of the Hilbert schemes of surfaces by localization formula
原文传递
导出
摘要 We use the Atiyah-Bott-Segal-Singer Lefschetz fixed point fornula to calculate the Hirzebruch Xy genus Xy(S[n]), where S[n] is the Hilbert scheme of points of length n of a surface 5. Combinatorial interpretation of the weights of the fixed points of the natural torus action on (C2)[n] is used. This is the first step to prove a conjectural formula about the elliptic genus of the Hilbert schemes. We use the Atiyah-Bott-Segal-Singer Lefschetz fixed point formula to calculate the Hirzebruch χy genus χy(S[n]), where S[n] is the Hilbert scheme of points of length n of a surface S. Combinatorial interpretation of the weights of the fixed points of the natural torus action on (C2)[n] is used. This is the first step to prove a conjectural formula about the elliptic genus of the Hilbert schemes.
出处 《Science China Mathematics》 SCIE 2002年第4期420-431,共12页 中国科学:数学(英文版)
关键词 genera HILBERT schemes LOCALIZATION formula. genera, Hilbert schemes, localization formula.
  • 相关文献

参考文献4

  • 1Robbert Dijkgraaf,Gregory Moore,Erik Verlinde,Herman Verlinde. Elliptic Genera of Symmetric Products and Second Quantized Strings[J] 1997,Communications in Mathematical Physics(1):197~209
  • 2Lothar G?ttsche,Wolfgang Soergel. Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces[J] 1993,Mathematische Annalen(1):235~245
  • 3Geir Ellingsrud,Stein Arild Str?mme. On the homology of the Hilbert scheme of points in the plane[J] 1987,Inventiones Mathematicae(2):343~352
  • 4James B. Carrell,David I. Lieberman. Holomorphic vector fields and Kaehler manifolds[J] 1973,Inventiones Mathematicae(4):303~309

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部