摘要
The Moor-Penrose generalized inverses (M-P inverses for short) of matrices over a finite field Fq 2 which is a generalization of the Moor-Penrose generalized inverses over the complex field, are studied in the present paper. Some necessary and sufficient conditions for anm xn matrixA over Fq 2 having an M-P inverse are obtained, which make clear the set ofm xn matrices over Fq 2 having M-P inverses and reduce the problem of constructing and enumerating the M-P invertible matrices to that of constructing and enumerating the non-isotropic subspaces with respect to the unitary group. Based on this reduction, both the construction problem and the enumeration problem are solved by borrowing the results in geometry of unitary groups over finite fields.
The Moor-Penrose generalized inverses (M-P inverses for short) of matrices over a finite field Fq2, which is a generalization of the Moor-Penrose generalized inverses over the complex field, are studied in the present paper. Some necessary and sufficient conditions for an m×n matrix A over Fq2 having an M-P inverse are obtained, which make clear the set of m×n matrices over Fq2 having M-P inverses and reduce the problem of constructing and enumerating the M-P invertible matrices to that of constructing and enumerating the non-isotropic subspaces with respect to the unitary group. Based on this reduction, both the construction problem and the enumeration problem are solved by borrowing the results in geometry of unitary groups over finite fields.
基金
This work was partly supported by the National Natural Science Foundation of China (Grant No. 60173016)
the 973 Foundation (Grant No. G1999035804).