摘要
In this paper, firstly we establish the relation theorem between the Maslov-type index and the index defined by C. Viterbo for star-shaped Hamiltonian systems. Then we extend the iteration formula of C. Viterbo for non-degenerate star-shaped Hamiltonian systems to the general case. Finally we prove that there exist at least two geometrically distinct closed characteristics on any non-degenerate star-shaped compact smooth hypersurface on R2n with n > 1. Here we call a hypersurface non-degenerate, if all the closed characteristics on the given hypersurface together with all of their iterations are non-degenerate as periodic solutions of the corresponding Hamiltonian system. We also study the ellipticity of closed characteristics when n=2.
In this paper, firstly we establish the relation theorem between the Maslov-type index and the index defined by C. Viterbo for star-shaped Hamiltonian systems. Then we extend the iteration formula ofC. Viterbo for non-degenerate star-shaped Hamiltonian systems to the general case. Finally we prove that there exist at least two geometrically distinct closed characteristics on any non-degenerate star-shaped compact smooth hypersurface on R2n with n > 1. Here we call a hypersurface non-degenerate, if all the closed characteristics on the given hypersurface together with all of their iterations are non-degenerate as periodic solutions of the corresponding Hamiltonian system. We also study the ellipticity of closed characteristics whenn = 2
基金
This work was partially supported by the 973 Program of the Ministryof Science and Technology, the Mathematical Center of the Ministry of Education, the Research Fund for the Doctorial Program of High Education, the Research Fund for the Doctorial Prog