期刊文献+

Mordell-Weil groups and Selmer groups of twin-prime elliptic curves 被引量:11

Mordell-Weil groups and Selmer groups of twin-prime elliptic curves
原文传递
导出
摘要 LetE=E σ :y 2 =x(x+σp)(x+σq) be elliptic curves, where σ= ±1,p andq are prime numbers withp + 2= q. (i) Selmer groups S2(E/Q), S03D5(E/Q), and $S^{\widehat{(\varphi )}} \left( {E/Q} \right)$ are explicitly determined, e.g. S2(E+1/Q)= (Z/2Z)2, (Z/2Z)3, and (Z/2Z)4 when p ≡ 5, 1 (or 3), and 7(mod 8), respectively. (ii) Whenp ≡ 5 (3, 5 for σ= ?1) (mod 8), it is proved that the Mordell-Weil group E(Q) ? Z/2Z ⊕ Z/2Z, rankE(Q) = 0, and Shafarevich-Tate group III (E/Q)[2]= 0. (iii) In any case, the sum of rankE(Q) and dimension of III (E/Q)[2] is given, e.g. 0, 1, 2 whenp ≡ 5, 1 (or 3), 7 (mod 8) for σ= 1. (iv) The Kodaira symbol, the torsion subgroup E(K)tors for any number fieldK, etc. are also obtained. Let E = Eσ : y2 = x(x + σp)(x + σq) be elliptic curves, where σ = ±1, p and q are primenumbers with p+2 = q. (i) Selmer groups S(2)(E/Q), S(φ)(E/Q), and S(φ)(E/Q) are explicitly determined,e.g. S(2)(E+1/Q)= (Z/2Z)2, (Z/2Z)3, and (Z/2Z)4 when p ≡ 5, 1 (or 3), and 7(mod 8), respectively. (ii)When p ≡ 5 (3, 5 for σ = -1) (mod 8), it is proved that the Mordell-Weil group E(Q) ≌ Z/2Z Z/2Z,symbol, the torsion subgroup E(K)tors for any number field K, etc. are also obtained.
出处 《Science China Mathematics》 SCIE 2002年第11期1372-1380,共9页 中国科学:数学(英文版)
基金 This work ws supported by the National Natural Science Foundation of China(Grant No.10071041).
关键词 ELLIPTIC curve Mordell-Weil group Selmer group. elliptic curve Mordell- Weil group Selmer group
  • 相关文献

参考文献3

  • 1Derong Qiu,Xianke Zhang.Elliptic curves and their torsion subgroups over number fields of type (2, 2, ..., 2)[J].Science in China Series A: Mathematics.2001(2)
  • 2Cassels,J. W. S.Lectures on Elliptic Curves, LMS Student Texts, Cambridge: Cambridge Univ[]..1991
  • 3Cremona,J. E.Algorithms for Modular Elliptic Curves, Cambridge: Cambridge Univ[]..1992

同被引文献47

  • 1张申贵.一类超二次椭圆方程的无穷多解[J].西华师范大学学报(自然科学版),2006,27(2):191-194. 被引量:4
  • 2潘家宇.关于丢番图方程x^2-Dy^4=1的一些注记[J].河南科学,1997,15(1):18-22. 被引量:9
  • 3Bryan Faulkner,Kevin James.A graphical approach to computing Selmer groups of congruent number curves[J]. The Ramanujan Journal . 2007 (1)
  • 4Qiu Derong,Zhang Xianke.Mordell-Weil groups and Selmer groups of twin- prime elliptic curves[J]. Science in China Series A: Mathematics . 2002 (11)
  • 5Schmitt S.Computation of the Selmer groups of certain parametrized elliptic curve. Acta Arithmetica . 1997
  • 6Dabrowski A,Wieczorek M.On the equation y2 = x(x-2m)(x + q-2m). Journal of Number Theory . 2007
  • 7Feng K.Non-Congruent Numbers and Elliptic Curves with Rank Zero. . 2008
  • 8Iwaniec H,Kowalski E.Analytic Number Theory. . 2004
  • 9Rhoades R.2-Selmer groups and Birch-Swinnerton-Dyer conjecture for the congruent number curves. Journal of Number Theory . 2009
  • 10Feng,K.Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture. Acta Arithmetica . 1996

引证文献11

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部