摘要
The Irtysh shear zone (ISZ) of Altai region is the lineament structure of the collision suture type, where granites of Kalba complex and granodiorites of Zmeinogorsk complex are exposed to regional gneiss formation and stress metamorphic alterations. This study is based on detailed structural observations at special grounds using optical and electron microscopy, and on the behavior analysis of isotopic systems from altered granitoids.Within the ISZ area we have established the continuous rows of granitoid stress metamorphism from initial recrystallization of protolite, its cataclasis and mechanical flaring up to complete recrystallization with alteration of mineral composition and formation of the streaky complexes of granite tectonites of blastomylonite and blastocataclasite types. The directed alteration of rocks has several impulse and is expressed by a change in morphology of mineral grains and their relations, magnification of deformation component in the rock structure, and formation of new mineral phases on the basis of initial ones without surface fluidization. At transformation of isotopic systems from granitoid, their feldspars, biotite and hornblende, we can observe “rejuvenation” of the rock substrate from 270-290 Ma for Kalba granitoids to 220-235 Ma for their tectonites, and for Rudny Altai granodiorites, their ages changes from 285-317 Ma to 232-257 Ma for their tectonites.
The Irtysh shear zone (ISZ) of Altai region is the lineament structure of the collision suture type, where granites of Kalba complex and granodiorites of Zmeinogorsk complex are exposed to regional gneiss formation and stress metamorphic alterations. This study is based on detailed structural observations at special grounds using optical and electron microscopy, and on the behavior analysis of isotopic systems from altered granitoids.Within the ISZ area we have established the continuous rows of granitoid stress metamorphism from initial recrystallization of protolite, its cataclasis and mechanical flaring up to complete recrystallization with alteration of mineral composition and formation of the streaky complexes of granite tectonites of blastomylonite and blastocataclasite types. The directed alteration of rocks has several impulse and is expressed by a change in morphology of mineral grains and their relations, magnification of deformation component in the rock structure, and formation of new mineral phases on the basis of initial ones without surface fluidization. At transformation of isotopic systems from granitoid, their feldspars, biotite and hornblende, we can observe “rejuvenation” of the rock substrate from 270-290 Ma for Kalba granitoids to 220-235 Ma for their tectonites, and for Rudny Altai granodiorites, their ages changes from 285-317 Ma to 232-257 Ma for their tectonites.