摘要
Based on energy balance equation and mass transfer equation, a general model to estimate actual evaporation from non-saturated surfaces was derived. Making use of two concepts, “relative evaporation” and “relative drying power”, a relationship was established to account for the departure from saturated conditions. Using this model, the actual evaporation (evapotranspiration) can be calculated without the need of potential evaporation estimation. Furthermore, the model requires only a few meteorological parameters that are readily and routinely obtainable at standard weather stations. Based on nearly 30 years data of 432 meteorological stations and 512 hydrological stations in China, in combined with GIS, nine typical river basins were selected. Using the data of the selected river basins, the model was tested. The results show that the actual evaporation rate can be estimated with an error of less than 10% in most areas of China, except few years in the Yellow River Basin.
Based on energy balance equation and mass transfer equation, a general model to estimate actual evaporation from non-saturated surfaces was derived. Making use of two concepts, “relative evaporation” and “relative drying power”, a relationship was established to account for the departure from saturated conditions. Using this model, the actual evaporation (evapotranspiration) can be calculated without the need of potential evaporation estimation. Furthermore, the model requires only a few meteorological parameters that are readily and routinely obtainable at standard weather stations. Based on nearly 30 years data of 432 meteorological stations and 512 hydrological stations in China, in combined with GIS, nine typical river basins were selected. Using the data of the selected river basins, the model was tested. The results show that the actual evaporation rate can be estimated with an error of less than 10% in most areas of China, except few years in the Yellow River Basin.
基金
National Key Basic Research Project of China, No.G19990436-01