期刊文献+

THE CONCAVE OR CONVEX PEAKED AND SMOOTH SOLITON SOLUTIONS OF CAMASSA-HOLM EQUATION 被引量:2

THE CONCAVE OR CONVEX PEAKED AND SMOOTH SOLITON SOLUTIONS OF CAMASSA-HOLM EQUATION
下载PDF
导出
摘要 The traveling wave soliton solutions and pair soliton solution to a class of new completely integrable, shallow water equation, Camassa-Holm equation are studied. The concept of concave or convex peaked soliton and smooth soliton were introduced. And the research shows that the traveling wave solution of that equation possesses concave and convex peaked soliton and smooth soliton solutions with the peakson. Simultaneously by applying Backlund transformation the new pair soliton solutions to this class of equation are given. The traveling wave soliton solutions and pair soliton solution to a class of new completely integrable, shallow water equation, Camassa-Holm equation are studied. The concept of concave or convex peaked soliton and smooth soliton were introduced. And the research shows that the traveling wave solution of that equation possesses concave and convex peaked soliton and smooth soliton solutions with the peakson. Simultaneously by applying Backlund transformation the new pair soliton solutions to this class of equation are given.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第5期557-567,共11页 应用数学和力学(英文版)
基金 theNationalNaturalScienceFoundationofChina ( 1 0 0 71 0 3 3 1) theNaturalScienceFoundationofJiangsu (BQ980 2 3 ) theEducationDepartmentFoundationforBackboneTeachers( 2 0 0 0 65_3 0 )
关键词 SOLITON peakson integrable system traveling wave solution soliton peakson integrable system traveling wave solution
  • 相关文献

参考文献10

  • 1Roberto Camassa;Darryl D Holm.An integrable shallow water equation with peaked solitons,1993(13).
  • 2Alber M S;Camassa R.The geometry of peaked soliton and billiard solutions of a class of integrable PDE's,1994(02).
  • 3Clarkson P A;Mansfield E L;Priestley T J.Symmetries of a class of nonlinear third-order partial differential equations,1997(25).
  • 4Xin Zhou-ping;ZHANG Ping.On the weak solutions to a shallow water equation[J],2000(09).
  • 5Michael Fisher;Jeremy Schiff.The camassa Holm equation:Conserved quantities andThe initial value problem,1999(03).
  • 6Adrian Constantin;Waner A Atrauss.Stability of peakons[J],2000(10).
  • 7Adrian Constantin;Joachim Escher.Well-posedness,global existence and blown up phenomena for a periodic quasi-linear hyperbolic equation,1998(05).
  • 8TIAN Li-xin.Wavelet approximate inertial manifold in nonlinear solitary wave equation[J],2000(08).
  • 9TIAN Li·xin;LIUZeng-rong.P dissipative operator[J],1999.
  • 10TIAN Li-xin;LIUZeng-rong.The Schrodinger operator[J],1998(01).

同被引文献24

  • 1WANG Yushun, WANG Bin & QIN MengzhaoLASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China,School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China,School of Mathematics and System Science, Chinese Academy of Sciences, Beijing 100080, China.Concatenating construction of the multisymplectic schemes for 2+1-dimensional sine-Gordon equation[J].Science China Mathematics,2004,47(1):18-30. 被引量:17
  • 2丁丹平,田立新.耗散Camassa-Holm方程的吸引子[J].应用数学学报,2004,27(3):536-545. 被引量:13
  • 3Li T Y,Yorke J A.Periodic three implies chaos[J].Amer Math Monthly,1975,82: 85-992.
  • 4Baillieul J,Brockett R W,Washburn R B.Chaotic motion in nonlinear feedback systems[J].IEEE Trans on Circuits and Systems,1980,27(1): 990-997.
  • 5Sparrow C T.Chaos in a three-dimensional single loop feedback system with a piecewise linear feedback function[J].Math Anal and Applies,1983,83(1): 275-291.
  • 6Gorzalek M J.Some observations on chaotic motion in single loop feedback systems[A].In:Proc 25th IEEE Conf on Decision and Control[C].Athnes,1986,588-589.
  • 7Ott E,Grebogi C,Yorke J A.Controlling chaos[J].Phys Rew Lett,1990,64:1169-1199.
  • 8Vakhnenko V O.High-frequency soliton-like waves in a relaxing medium[J].J Math Phys,1999,40: 2011-2020.
  • 9Morrison A J,Parkes E J.The N-soliton solution of a generalized Vakhnenko equation[J].Glasgow Math J,2001,43A: 65-90.
  • 10Morrison A J,Parkes E J.The N-soliton solution of the modified generalized Vakhnenko equation[J].Chaos,Solitons and Fractals,2003,16:13-26.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部