期刊文献+

EXPERIMENTAL STUDY OF MEASUREMENT FOR DISSIPATION RATE SCALING EXPONENT IN HEATED WALL TURBULENCE

EXPERIMENTAL STUDY OF MEASUREMENT FOR DISSIPATION RATE SCALING EXPONENT IN HEATED WALL TURBULENCE
下载PDF
导出
摘要 Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the non-istropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region . Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region . The scaling law of coarse-grained dissipation rate structure function is foun Experimental investigations have been devoted to the study of scaling law of coarse-grained dissipation rate structure function for velocity and temperature fluctuation of non-isotropic and inhomogeneous turbulent flows at moderate Reynolds number. Much attention has been paid to the case of turbulent boundary layer, which is typically the nonistropic and inhomogeneous trubulence because of the dynamically important existence of organized coherent structure burst process in the near wall region. Longitudinal velocity and temperature have been measured at different vertical positions in turbulent boundary layer over a heated and unheated flat plate in a wind tunnel using hot wire anemometer. The influence of non-isotropy and inhomogeneity and heating the wall on the scaling law of the dissipation rate structure function is studied because of the existence of organized coherent structure burst process in the near wall region. The scaling law of coarse-grained dissipation rate structure function is found to be independent of the mean velocity shear strain and the heating wall boundary condition. The scaling law of the dissipation rate structure function is verified to be in agreement with the hierarchical structure model that has been verified valid for isotropic and homogeneous turbulence.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第9期1035-1044,共10页 应用数学和力学(英文版)
基金 Foundation items:the National Natural Science Foundation of China(10002011,19732005) the National Climbing Project(970211021)
关键词 HEATING wall turbulence dissipation rate scaling law hierarchical structure model heating wall turbulence dissipation rate scaling law hierarchical structure model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部