摘要
We used a thermally reversible hybrid gel made of billions of physically jam-packed swollen thermally sensitivepoly(N-isopropyl-acrylamide) chemical microgels. Laser light scattering study on a series of such hybrid gels formed atdifferent gelling rates and temperatures revealed that the position-dependence of the scattering speckle pattern(staticnonergodicity) came from large voids formed during the sol-gel transition. With a proper preparation, such a nonergodicitycould be completely removed, indicating that the static nonergodicity generally observed in a gel is not indinsic, but comesfrom the clustering "island" structure formed during the gelation process.
We used a thermally reversible hybrid gel made of billions of physically jam-packed swollen thermally sensitivepoly(N-isopropyl-acrylamide) chemical microgels. Laser light scattering study on a series of such hybrid gels formed atdifferent gelling rates and temperatures revealed that the position-dependence of the scattering speckle pattern(staticnonergodicity) came from large voids formed during the sol-gel transition. With a proper preparation, such a nonergodicitycould be completely removed, indicating that the static nonergodicity generally observed in a gel is not indinsic, but comesfrom the clustering "island" structure formed during the gelation process.
基金
The financial support of the NNSF Fund (No. 29974027), the CAS Bai Ren Project, and the Research Grants Council of the Hong Kong Special Administration Region Earmarked Grant (CUHK 4266/00P, 2160135) is gratefully acknowledged.