期刊文献+

具有平行平均曲率的类空子流形的Pinching定理

Pinching theorems of space-like submnifolds with parallel mean curvature vector
下载PDF
导出
摘要 证明若 Mn 是 de Sitter空间 Sn+ PP (1 ) (P >1 )中具有单位平行平均曲率向量的紧致类空子流形 ,若关于平均曲率向量的第二基本形式长度的平方σξ <2 n,则 Mn 是全脐点的 .在相同条件下还证明了一个整体Pinching定理 :若σ为第二基本形式长度的平方 ,c和 Vol M分别为 M的等周常数和体积 ,则存在仅与 n,c,Vol M有关的常数 A,当满足 ∫σn2 d V2n <A时 ,Mn The author has proved the following: Let \$M\+n\$ be a compact space\|like submanifold with unit parallel mean curvature vector in an de sitter space \$S\+\{n+P\}\-P(1)(P>1)\$ and \$σ\-ξ\$ the square of the length of the second fundamental form of \%M\+n\% with respect to mean curvature vector. If \$σ\-ξ<2n\$, then \$M\+n\$ is a totally umbilic submanifold. A global pinching theorem is also obtained. Denoted by \$‖σ‖\-P,\$ and Vol \%M\% are the \$L\-P\$ norm of the square of the length of the second fundamental form of \$M\+n\$, isoperimetric constant and volume of \$M\+n\$ respectively. Then there is a constant A, depending only on \$n,\$ and Vol \%M\%, such that if \$‖σ‖\-\{n2\}<A\$, then \$M\+n\$ is a totally umbilic submanifold.\;
作者 沈学文
出处 《杭州师范学院学报(自然科学版)》 CAS 2002年第3期23-26,39,共5页 Journal of Hangzhou Teachers College(Natural Science)
关键词 平均曲率向量 类空子流形 全脐 mean curvature vector space\|like submanifolds totally umbilic
  • 相关文献

参考文献4

  • 1H. Wang.Some global pinching theorem of Submanifolds in Sphere[].Acta mathmatica Sinica (in Chinese).1988
  • 2S. T. Yau.Submanifolds with constant mean curvatureⅡ[].American Journal of Mathematics.1975
  • 3S. Montiel.An integaral inequality for compact Spacelike hypersurface in de Sitter Space and applications to the case of constant mean curvature[].Indiana University Mathematics Journal.1988
  • 4C. L. Shen.A global pinching theorem of minimal hypersurfaces in the Sphere[].Proceedings of the American Mathematical Society.1989

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部