期刊文献+

基于特征向量提取的核回归建模方法研究

Kernel Regression Modeling Method Based on Feature Vector Selection
下载PDF
导出
摘要 针对工业软测量中的非线性数据回归问题,提出一种基于特征向量提取的核回归建模方法。基于核函数非线性变换技术,建立非线性软测量模型—核回归模型。为了减少核回归模型中的优化参数,采用特征向量提取(FVS)算法选择核回归模型的特征向量,最后采用改进的粒子群优化算法估计模型参数。在工业数据上的应用结果说明了方法的有效性。 To the problem of the nonlinear data regression for industrial soft sensor,a kernel regression modeling method based on feature vector selection is presented.From the nonlinear transformation based on kernel function,a nonlinear kernel regression soft sensor model is built.In order to reduce the number of optimization parameters in the kernel regression model,the feature vector selection is applied to select the feature vectors for kernel regression model.The particle swarm optimization algorithm is improve...
出处 《控制工程》 CSCD 北大核心 2010年第4期517-520,共4页 Control Engineering of China
基金 国家863计划资助项目(2007AA04Z193) 山东省自然基金资助项目(Y2007G49)
关键词 核建模方法 特征向量提取 粒子群算法 Kernel modeling method feature vector selection particle swarm optimization
  • 相关文献

参考文献1

二级参考文献17

  • 1桂卫华,李勇刚,阳春华,陈志盛.基于改进聚类算法的分布式SVM及其应用[J].控制与决策,2004,19(8):852-856. 被引量:13
  • 2高宪文,张傲岸,魏庆来.基于神经网络的钢包精炼终点预报[J].东北大学学报(自然科学版),2005,26(8):726-728. 被引量:11
  • 3杨金芳,翟永杰,王东风,徐大平.基于支持向量回归的时间序列预测[J].中国电机工程学报,2005,25(17):110-114. 被引量:65
  • 4邓长辉,王姝,王福利,毛志忠,王嘉铮.真空感应炉终点碳含量预报[J].控制与决策,2006,21(2):210-212. 被引量:2
  • 5HAO Xiao-jing,ZHENG Peng,XIE Zhi.A predictive modeling for blast furnace by integrating neural network with partial least squares regression[C]//IEEE International Conference on Industrial Technology.United States:Institute of Electrical and Electronics Engineers Inc,Piscataway,NJ 08855-1331,2004:1162-1167.
  • 6Roy N K,Potter W D,Landau D P.Polymer property prediction and optimization using neural networks[J].IEEE Transactions on Neural Networks,2006,17(4):1001-1014.
  • 7LI Hai-sheng,ZHU Xue-feng.Application of support vector machine method in prediction of kappa number of kraft pulping process[C]//Proceedings of the Word Congress on Intelligent Control and Automation (WCICA),v 4,WCICA 2004.Fifth World Congress on Intelligent Control and Automation,Conference Proceedings.United States:Institute of Electrical and Electronics Engineers Inc,Piscataway,2004:3325-3330.
  • 8Duchesne C,MacGregor J F.Multivariate analysis and optimization of process variable trajectory for batch processes[J].Chemometrics and Intelligent Laboratory Systems,2000,51(1):125-137.
  • 9Baffi G,Martin E B,Morris A J.Non-linear dynamic projection to latent structures modeling[J].Chemometrics and Intelligent Laboratory System,2000,52(1):5-22.
  • 10Kim K,Lee J M,Lee I B.A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction[J].Chemometrics and Intelligent Laboratory System,2005,79(1/2):22-30.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部