期刊文献+

盐度对细菌菌株降解苯酚的影响 被引量:2

Influence on Phenol Degradation by Bacterial Strains under Different Salinity Conditions
下载PDF
导出
摘要 从处理苯酚废水活性污泥中筛选分离到四株苯酚降解优势细菌菌株JHCFS1,JHCFS2,JHCFS3与JHCFS4,通过四株细菌在不同盐度条件下的苯酚降解率表明,随着盐浓度的逐渐升高,抑制作用逐渐增大,当NaCl,KCl浓度为4%时,四株细菌降解苯酚均受到显著抑制。苯酚浓度为1000mg/L,NaCl浓度为3%时,JHCFS2的降解率最高为83%,JHCFS4的降解率最低为47.20%;KCl浓度为3%时,JHCFS2的降解率最高为99%,JHCFS4的降解率最低为48%,表明四株菌在盐浓度(NaCl,KCl)低于3%的条件下可正常降解苯酚。通过对四株菌的16S rRNA基因克隆与序列分析,在NCBI进行BLAST获得同源性序列,利用Clustalx1.8软件和MEGA4.0软件进行同源性比较和系统发育学分析,结合生理生化特性将菌株JHCFS1,JHCFS2,JHCFS3与JHCFS4(GenBank收录号:FJ455076,FJ455077,FJ458437与FJ458438)分别归为Bacillus simplex,Bacillus cereus,Bacillus pumilus与Bacillus cibi,为降解苯酚提供了微生物物种资源。 Four phenol degradation bacterial strains named JHCFS1,JHCFS2,JHCFS3 and JHCFS4 were isolated from activated sludge in phenol wastewater treatment system.Phenol degradation efficiency of 4 bacterial strains were studied under different salinity conditions,results indicated that degradation efficiencies of the 4 bacterial phenol decreased with increasing salinity and degradation efficiency was the lowest when NaCl and KCl concentration was 4% respectively.When the phenol concentration was 1,000mg/L,NaCl conc...
出处 《环境科学与技术》 CAS CSCD 北大核心 2010年第11期33-38,共6页 Environmental Science & Technology
基金 江苏省自然科学基金(BK2008121) 江苏省高校自然科学基础研究项目(06KJD180180) 江苏省遗传学重点学科建设项目资助(SYC0709) 徐州师范大学培育课题(06DYL03) 徐州师范大学自然科学基金项目(07XLB11)
关键词 苯酚 盐度 16SrRNA 发育树 基因 phenol salinity 16S rRNA phylogenetic tree gene
  • 相关文献

参考文献16

二级参考文献53

共引文献208

同被引文献26

  • 1齐枝花,于鑫,余萍,夏明芳,郑正.细菌细胞间通讯的群感效应[J].微生物学通报,2005,32(2):128-133. 被引量:11
  • 2AYRAT M Z, RIMMA P N, ANDY J P, et al. Influence of pH on 2,4,6-trinitrotoluene degradation by Yarrowia lipolytica [J]. Chemosphere, 2010, 79: 426-433.
  • 3XU Z, MULCHANDANI A, CHEN W. Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions [ J ]. Biotechnology Progress, 2003, 19 (6) : 1812-1815.
  • 4HANMED A T, BAYRAKAR E, MEHMETOGLU T, et al. Substrate interactions during the biodegradation of benzene, toluene and phenol mixtures[ J]. Process Biochemistry, 2003, 39 (1) : 27-35.
  • 5WAGNER M, NICELL J A. Peroxidase-catalyzed removal of phenols from a petroleum refinery wastewater [ J ]. Water Science and Technology, 2001,43 (2) : 253-260.
  • 6RA J S, OH S Y, LEE B C, et al. The effect of suspended particles coated by humic acid on the toxicity of pharmaceuti- cals, estrogens, and phenolic Compounds[J]. Environment Internatiional, 2008, 34(2) : 184-192.
  • 7ARIANA F, BOSCHKE E, BLEY T. Rapid monitoring of the biodegradation of phonl-like compounds by the yeast candida maltosa using BOD measurements[J]. International Biodeterioration Biodegradation, 2004, 54( 1 ) : 69-76.
  • 8VALLI K, GOLD M H. Degradation of 2,4-dicholorophenol by the lignin-degrading fungus Phanerochaete chrysosporium [ J]. Journal of Bacteriology, 1991, 173: 345-352.
  • 9SHINGLER V, FRANKLIN F H, TSUDA M, et al. Molecular analysis of a plasmid encoded phenol hydrolase from Pseud- omonas CF600[J]. Journal of General Microbiology, 1989, 135: 1083-1092.
  • 10KIM Y, AYOUBI P, HARKER A R. Constitutive expression of the Cloned phenol hydroxylase gene(s) from Alcaligenes eutrophus JMPI34 and concomitant trichloroethylene oxidation [ J]. Applied and Environmental Microbiology, 1996, 62(9) : 3227-3233.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部