期刊文献+

哈明距离下极大不一致支撑树的部分逆问题 被引量:2

The partial inverse least uniform spanning tree problem under hamming distance
下载PDF
导出
摘要 给定一个简单无向赋权图和其中的一个森林,极大不一致支撑树的部分逆问题研究如何尽可能少地改变图中各边的权,使得在新的权值下存在一个极大不一致支撑树包含该森林.在赋权哈明距离下,得到了该问题的一些性质,并且给出了求解该问题的多项式时间算法. The objective of a partial inverse optimization problem was to find a minimum perturbation of the parameter values,in an underlying optimization problem with a partially given solution,such that the partial solution become a part of the optimal solution under the new parameters.Given a simple undirected weighted graph and a forest,the partial inverse least uniform spanning tree problem was how to adjust the weights of the edges as small as possible so that the partially given forest is contained in a new le...
出处 《中国计量学院学报》 2010年第3期271-273,共3页 Journal of China Jiliang University
基金 国家自然科学基金资助项目(No.10601051) 浙江省自然科学基金资助项目(No.Y6090472)
关键词 部分逆问题 极大不一致支撑树 哈明距离 多项式时间算法 partial inverse problem least uniform spanning tree hamming distance polynomial time algorithm
  • 相关文献

参考文献9

  • 1赵敏.图的2-距离控制数为[p/3]的必要条件[J].中国计量学院学报,2008,19(3):265-268. 被引量:4
  • 2王航平.图的Hamilton问题的着色否定方法[J].中国计量学院学报,2005,16(3):218-221. 被引量:7
  • 3张斌武,何勇.哈明距离下的网络逆问题研究综述[J].高校应用数学学报(A辑),2004,19(B12):503-509. 被引量:7
  • 4AHUJA R K,,ORLI N J B.Inverse opti mization,part I:Linear programming and general problem. Operations Research Letters . 2001
  • 5YANG X G,ZHANGJ Z.Inverse sorting problem bymini mizingthe total weighted number of changes and partialinverse sorting problems. Computational Opti mizationand Applications . 2007
  • 6CAI M C,DUI N C W,YANG X G,ZHANG J Z.Thepartial inverse mini mum spanning tree problem whenweight increase is forbidden. European Journal of Oper-ational Research . 2008
  • 7Xiaoguang Yang,Jianzhong Zhang.Partial inverse assignment problems underl1norm. Operations Research Let-ters . 2007
  • 8Heuberger C.Inverse combinatorial optimization: a survey on problem, methods, and results. The Journal of Combinatorics . 2004
  • 9Camerini,P.M.,Maffioli,F.,Martello,S.,Toth,P.Most and least uniform spanning trees. Discrete Applied Mathematics . 1986

二级参考文献17

  • 1孙天川,赵敏,康丽英.循环图及单圈图的有效控制集与完美控制集[J].上海大学学报(自然科学版),2004,10(5):508-511. 被引量:1
  • 2禹继国,刘桂真,曹宝香.图的连通因子(英文)[J].运筹学学报,2005,9(1):49-57. 被引量:1
  • 3张根保.数字化质量管理系统及其关键技术[J].中国计量学院学报,2005,16(2):85-92. 被引量:23
  • 4赵敏,康丽英.Power domination in planar graphs with small diameter[J].Journal of Shanghai University(English Edition),2007,11(3):218-222. 被引量:1
  • 5Burton D, Toint Ph L. On the use of an inverse shortest paths problem [J]. Mathematical Programming, 1992,53:45-61.
  • 6Xu S,Zhang J. An inverse problem of the weighted shortest path problem[J]. Japan J Indust Appl Math, 1995,12 : 47-59.
  • 7Zhang J, Liu Z. Calculating some inverse linear programming problem [ J]. Journal of Computational and Applied Mathematics, 1996,72 : 261-273.
  • 8Yang C,Zhang J ,Ma Z. Inverse maximum flow and minimum cut problem[J]. Optimization,1997,40:147-170.
  • 9Ahuja R K,Orlin J B. A faster algorithm for the inverse spanning tree problem[J]. Journal of Algorithms, 2000,34:177-193.
  • 10Heuberger C. Inverse optimization:A survey on problems, methods, and results [J]. Journal of Combinatorial Optimization, 2004,8 (3):329-361.

共引文献13

同被引文献16

  • 1乔诚,王勤.导出匹配可扩二部图度和条件的改进[J].中国计量学院学报,2010,21(1):75-77. 被引量:7
  • 2王航平.图的Hamilton问题的着色否定方法[J].中国计量学院学报,2005,16(3):218-221. 被引量:7
  • 3ZHANG B W, ZHANG J Z, QI L Q. The shortest path improvement problem under Hamming distance[J]. Journal of Combinatorial Optimization,2006(12) :351-361.
  • 4ZHANG J Z, YANG X G, CAI M C. Inapproximability and a polynomially solvable special case of a network im- provement problem[J].European Journal of Operational Research, 2004,155 : 251-257.
  • 5CHERKASSKY B V, GOLDBERG A V, RADZIK T. Shor- test paths algorithms: Theory and experimental evaluation[J].Mathematical Programming, 1996,73(2) : 129-174.
  • 6GOLDBERG A V. Scaling algorithms for the shortest path problem[J]. SIAM Journal of Computing, 1995,24 : 494-504.
  • 7CHRISTOFIDES N, MINGOZZI A, TOTH P. Exact al- gorithms for the vehicle routing problem, based on span- ning tree and shortest path relaxations[J]. Mathematical Programming, 1981,20 ( 1 ) : 255-282.
  • 8HOCHBAUM D S,SHMOYS D B. A best possible heuristic for the k-center problem[J].Mathematics of Operations Research,1985,(02):180-184.
  • 9KHULLER S,SAHA B,KANTHI K. New approximation results for resource replication problems[J].Lecture Notes in Computer Science,2012.218-230.
  • 10MALICK J,ROUPIN F. Numerical study of semi-definite sounds for the k-cluster problem[J].Electronic Notes in Discrete Mathematics,2010,(01):399-406.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部