摘要
We calculate thermal and phase structures of subducting slabs for different subducting velocities by a modified coupling code of the kinetic phase-transformation equations and the heat-diffusion equation with latent-heat release. Whereafter, we estimate their rheology structures based on the thermal and phase structures from the mineral physical point of view. At shallow depth, the upper layer has a high effective viscosity greater than 1034Pa · s; while the lower layer has a relatively low effective viscosity, which is greater than 1026Pa · s nevertheless. The effective viscosities below the kinetic phase boundary of olivine to wadsleyite decrease obviously, and reach a minimum of 1022Pa · s. Small areas with higher effective viscosities exist above the depth of about 700 km in subducting slabs, which are produced by lower temperatures that are related with endothermic phase transformation of spinel to perovskite and magnesiowustite. The 1% and 99% isograds of spinel proportion delineate tortuous belts with low effective viscosities, which would affect the geodynamic behavior of subducting slabs.
We calculate thermal and phase structures of subducting slabs for different subducting velocities by a modified coupling code of the kinetic phase-transformation equations and the heat-diffusion equation with latent-heat release. Whereafter, we estimate their rheology structures based on the thermal and phase structures from the mineral physical point of view. At shallow depth, the upper layer has a high effective viscosity greater than 1034Pa · s; while the lower layer has a relatively low effective viscosity, which is greater than 1026Pa · s nevertheless. The effective viscosities below the kinetic phase boundary of olivine to wadsleyite decrease obviously, and reach a minimum of 1022Pa · s. Small areas with higher effective viscosities exist above the depth of about 700 km in subducting slabs, which are produced by lower temperatures that are related with endothermic phase transformation of spinel to perovskite and magnesiowustite. The 1% and 99% isograds of spinel proportion delineate tortuous belts with low effective viscosities, which would affect the geodynamic behavior of subducting slabs.
基金
the State Science and Technology Commission (Grant No. 95-S-05) and the National Natural Science Foundation of China (Grant No. 49604056).