期刊文献+

Compact composition operators on the Bloch space in polydiscs 被引量:17

Compact composition operators on the Bloch space in polydiscs
原文传递
导出
摘要 Let Un be the unit polydisc of ?n and φ=(φ1, ?, φ n ) a holomorphic self-map of Un. As the main result of the paper, it shows that the composition operator C is compact on the Bloch space β(Un) if and only if for every ε > 0, there exists a δ > 0, such that $$\sum\limits_{k,1 = 1}^n {\left| {\frac{{\partial \phi _l }}{{\partial z_k }}(z)} \right|} \frac{{1 - |z_k |^2 }}{{1 - |\phi _l (z)|^2 }}< \varepsilon ,$$ whenever dist(φ(z), ?U n )<δ. Let Un be the unit polydisc of Cn and =(1,…n) a holomorphicself-map of Un. As the main result of the paper, it shows that the composition operator Cφ is compact on the Bloch space β(Un) if and only if for every ε>0, there exists a δ>0, such thatwhenever dist((z),Un)<δ.
出处 《Science China Mathematics》 SCIE 2001年第3期286-291,共6页 中国科学:数学(英文版)
基金 This work was supported in part by the National Natural Science Foundation of China ( Grant No. 19871081).
关键词 Bloch space POLYDISC composition operator Bergman mertic Bloch 空间;polydisc;作文操作员;Bergman mertic;
  • 相关文献

参考文献1

二级参考文献2

共引文献43

同被引文献47

引证文献17

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部