期刊文献+

Geodesic flows on path spaces

Geodesic flows on path spaces
原文传递
导出
摘要 On the path space over a compact Riemannian manifold, the global existence and the global uniqueness of the quasi-invariant geodesic flows with respect to a negative Markov connection are obtained in this paper. The results answer affirmatively a left problem of Li. On the path space over a compact Riemannian manifold, the global existence and the global uniqueness of the quasi-invariant geodesic flows with respect to a negative Markov connection are obtained in this paper. The results answer affirmatively a left problem of Li.
作者 向开南 刘勇
出处 《Science China Mathematics》 SCIE 2001年第4期467-473,共7页 中国科学:数学(英文版)
基金 The authors thank Dr. Li Xiangdong for posing this question and Prof. Ma Zhiming for his encouragement. This project was supported by China Postdoctoral Science Foundation, Tianyuan Foundation the Mathematical Center of Ministry of Education.
关键词 Wiener measure QUASI-INVARIANCE geodesic flow 维纳措施;伪不变性;测地学的流动;
  • 相关文献

参考文献3

  • 1Hsu,E.Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold, J[].Journal of Functional Analysis.1995
  • 2Stroock,D. W.Some thoughts about Riemannian structures on path spaces[].Preprints.1996
  • 3Driver,B.A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact manifold, J[].Journal of Functional Analysis.1992

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部