Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebra
被引量:1
Two theorems on cosymplectic hypersurfaces of six-dimensional Hermitian submanifolds of Cayley algebra
摘要
Proves that cosymplectic hypersurfaces of six dimensional Hermitian submanifolds of the octave algebra are ruled manifolds and establishes a necessary and sufficient condition for a cosymplectic hypersurface of Hermitian M 6 O to be a minimal submanifold of M 6.
Proves that cosymplectic hypersurfaces of six dimensional Hermitian submanifolds of the octave algebra are ruled manifolds and establishes a necessary and sufficient condition for a cosymplectic hypersurface of Hermitian M 6 O to be a minimal submanifold of M 6.
参考文献10
-
1STEPANOVALV.Contactgeometryofhypersurfacesofquasi K hlerianmanifolds[].MSPU″VILenin″.1995
-
2STEPANOVALV.Quasi SasakianstructureonhypersurfacesofHermitianmanifolds[].ScienWorksofMSPU″VILenin″.1995
-
3BANARUMB.Hermitiangeometryofsix dimensionalsubmani foldsofCayleyalgebra[].MSPU″VILenin″.1993
-
4GOLDBERG S.Totally geodesic hypersurfaces of Kaehler manifolds[].Pacific Journal of Mathematics.1968
-
5TASHIRO Y.On contact structure of hypersurfaces in complex manifolds[].The Tohoku MaThematical Journal.1963
-
6KIRICHENKO V F,STEPANOVA L V.Geometry of hypersurfaces of quasi-K hlerian manifolds[].Uspekhi Matematicheskih Nauk.1995
-
7KIRICHENKO V F.On nearly-K hlerian structures induced by means of 3-vector cross products on six-dimensional submanifolds of Cayley algebra[].Vestnik MGU.1973
-
8KIRICHENKO V F.Methods of the generalized Hemitian geometry in the theory of almost contact metric manifolds[].Problems in General Surgery.1986
-
9GRAY A.Some examples of almost Hermitian manifolds[].Illinois Journal of Mathematics.1966
-
10CARTAN E.Riemannian geometry in an orthogonal frame[].MGU.1960
同被引文献30
-
1] Brown R,Gmy A.Vector cross products.Comm[J].Math. Helv.,1967,42: 222-236.
-
2Gray A. Six-dimensional almost complex manifolds defined by means of three-fold vector cross products[J]. TShoku Math.J.,1969,21 (4): 614-620.
-
3Gray A. Vector cross products on manifolds[J]. Trans. Amer. Math. Soc., 1969,141 : 465 -504.
-
4Gray A. Nearly Kahler manifolds[J]. J. Diff. Geom., 1970,4: 283 -309.
-
5Kirichenko V F. On nearly-Kahlerian structures induced by means of 3-vector cross products on six-dimensionalsubmanifolds of Cayley aigebm[J].Vestnik MGU,1973, 3:70-75.
-
6Kirichenko V F. Classification of Kahlerian structures, defined by means of three-fold vector cross products on six-dimensional submanifolds of Cayley algebra [ J ]. Iz- vestia Vuzov.Math.,1980,8:32-38.
-
7Li Haizhong. The Ricci curvature of totally real 3-dimen- sional submanifolds of the nearly-Kaehler 6-sphere. Bull [J].Belg.Math. Soc.Simon Stevin,1996 ,3 :193 -199 .
-
8Li Haizhong, Wei Gouxin. Classification of l_agrangian Willmore submanifolds of the nearly-Kaehler 6-sphere S6 (1) with constant scalar curvature [J]. Glasgow Math. J.,2006,48:53-64.
-
9Hashimoto H.Characteristic classes of oriented 6-dimen- sional submanifolds in the octonions[J].Kodai Math.J, 1993,16:65-73.
-
10[ Hashimoto H. Oriented 6-dimensional submanifolds in the octonions [ J ]. Internat. J. Math. Math. Sci., 1995,18: 111-120.
-
1Mihail BANARU.The U-Kenmotsu Hypersurfaces Axiom and Six-Dimensional Hermitian Submanifolds of Cayley Algebra[J].四川理工学院学报(自然科学版),2013,26(3):1-5.
-
2CHEN Meng.Some birationality criteria on 3-folds with p_g>1 Dedicated to the memory of Professor XIAO Gang[J].Science China Mathematics,2014,57(11):2215-2234. 被引量:2
-
3赵海兴.具有5n+4个点的5部图的色性[J].兰州大学学报(自然科学版),2004,40(3):12-16. 被引量:1
-
4SONGHong-zao SONGXiao-xin.A Conjecture on Veronese Generating Submanifolds[J].Chinese Quarterly Journal of Mathematics,2004,19(1):63-66.
-
5Qing Chen Department of Mathematics,The University of Science and Technology of China,Hefei 230026,P.R.China E-mail:qchen@ustc.edu.cn.On the Isometric Minimal Immersion into a Euclidean Space[J].Acta Mathematica Sinica,English Series,1999,15(4):555-560.
-
6Conformal deformation of a close Riemannian submanifold to minimal submanifold[J].Chinese Science Bulletin,1998,43(6):527-527.
-
7范翔,徐元清,陆挺,李艳,樊玉凤.自相关过程的MUBM控制图[J].数理统计与管理,2015,34(5):849-857. 被引量:3
-
8ZHANG Da-Jun WU Hua.A Note on Casoratian Solutions to Two-Dimensional Toda Lattice[J].Communications in Theoretical Physics,2007,47(3):390-392.
-
9马仁义.Periodic Orbits on AF-Symplectic Manifolds[J].Tsinghua Science and Technology,1997,2(3):99-102.
-
10WANG MingZhi.Some lower bounds for the canonical volume of 3-folds of general type[J].Science China Mathematics,2014,57(12):2529-2538.