期刊文献+

非线性双曲型积分微分方程有限元逼近的误差分析

ERROR ANALYSIS OF THE FINITE ELEMENT APPROXIMATIONS FOR HYPERBOLIC PARTIAL INTEGRO-DIGGERENTIAL EQUATIONS
下载PDF
导出
摘要 考虑非线性双曲型积分微分方程半离散有限格式 ,得到H1超收敛和最优阶L∞ 和Wl,∞ 模误差估计 . Semi discrete finite element approximations schemes of nonlinear hyperbolic partial integro differential equations are considered.Superconvergence order in H 1 and optimal maximum norms in L ∞ and W 1,∞ are derived.The results in this paper perfect the theory of Finite Element Methods.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2001年第2期161-170,共10页 Journal of Shandong University(Natural Science)
关键词 非线性双曲 积分微方程 半离散有限元 超收敛 最大模最优阶误差估计 nonlinear hyperbolic integro differential equation superconvergence optimal maximum norms finite element
  • 相关文献

参考文献4

  • 1J Douglas Jr,T Dupont.Galerkin Methods for Parabolic Equations[].SIAM Journal on Numerical Analysis.1970
  • 2P G Giarlet.The Finite Element Methods for Elliptic Problems[]..1978
  • 3Vidar Thomee,N Y Zhang.Error Estimates for Semi-discrete Finite Element Methods for Parabolic Integro-differential Equation[].Mathematics of Computation.1988
  • 4Y Lin,V Thomee,L B Wahlbin.Ritz-volterra Projection to Finite Element Spaces and Applications to Integro-differential and Related equations[].SIAM Journal on Numerical Analysis.1991

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部