期刊文献+

Prediction of flow stresses at high temperatures with artificial neural networks 被引量:1

Prediction of flow stresses at high temperatures with artificial neural networks
下载PDF
导出
摘要 On the basis of the data obtained on Gleeble 1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 Al Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%. [ On the basis of the data obtained on Gleeble-1500 Thermal Simulator, the predicting models for the relation between stable flow stress during high temperature plastic deformation and deformation strain, strain rate and temperature for 1420 AI-Li alloy have been developed with BP artificial neural networks method. The results show that the model on basis of BPNN is practical and it reflects the actual feature of the deforming process. It states that the difference between the actual value and the output of the model is in order of 5%.
出处 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期213-216,共4页 Transactions of Nonferrous Metals Society of China
关键词 Al Li alloy high temperature plastic deformation flow stress neural networks Al-Li alloy high temperature plastic deformation flow stress neural networks
  • 相关文献

参考文献1

二级参考文献6

  • 1王殿辉,刘振宇,王国栋,张强,姜洪生,王洪水.利用神经网络预测热轧板带力学性能[J].钢铁,1995,30(1):28-31. 被引量:27
  • 2曾卫东,热加工工艺,1996年,1卷,3页
  • 3Tarng Y S,J Mater Process Technol,1995年,47卷,3/4期,273页
  • 4张立明,人工神经网络的模型及其应用,1993年
  • 5焦李成,神经网络系统理论,1990年
  • 6周纪华,金属塑性变形阻力,1989年

共引文献28

同被引文献6

  • 1张慧书,战东平,姜周华.基于改进BP神经网络的铁水预处理终点硫含量预报模型[J].钢铁,2007,42(3):30-32. 被引量:16
  • 2Brahma D, Lingamaneni R K, Amlan D, et al. Strategies for Development of Process Control Models for Hot Metal Desulfurization: Conventional and AI Techniques[J]. Materials and Manufacturing Processes, 2005, 20(3): 407.
  • 3Haque M E, Sudhakar K V. ANN Back-Propagation Prediction Model for Fracture Toughness in Microalloy Steel[J]. International Journal of Fatigue, 2002, 24(9) : 1003.
  • 4Hlker B T, Mustafa S. Prediction of Rubberized Mortar Properties Using Artificial Neural Network and Fuzzy Logic[J]. Journal of Materials Processing Technology, 2008, 199(1- 3) : 108.
  • 5Irons G A, Celik C. Comparison of Iron Desulphurisation Using Calcium Carbide and Lime-Magnesium Mixtures[J]. Ironmaking and Steelmaking, 1992, 19(2): 136.
  • 6孙中强,梁连科,车荫昌.用镁和石灰对铁水脱硫预处理的热力学[J].炼钢,2001,17(5):22-23. 被引量:11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部