摘要
The optimal condition and its geometrical characters of the least square adjustment were proposed. Then the relation between the transformed surface and least squares was discussed. Based on the above, a non iterative method, called the fitting method of pseudo polynomial, was derived in detail. The final least squares solution can be determined with sufficient accuracy in a single step and is not attained by moving the initial point in the view of iteration. The accuracy of the solution relys wholly on the frequency of Taylor’s series. The example verifies the correctness and validness of the method. [
The optimal condition and its geometrical characters of the least-square adjustment were proposed. Then the relation between the transformed surface and least-squares was discussed. Based on the above, a non-iterative method, called the fitting method of pseudo-polynomial, was derived in detail. The final least-squares solution can be determined with sufficient accuracy in a single step and is not attained by moving the initial point in the view of iteration. The accuracy of the solution relys wholly on the frequency of Taylor's series. The example verifies the correctness and validness of the method.
出处
《中国有色金属学会会刊:英文版》
CSCD
2001年第2期311-314,共4页
Transactions of Nonferrous Metals Society of China
基金
Project ( 4 98740 0 1)supportedbytheNationalNaturalScienceFoundationofChina