摘要
The equilibrium geometry and electronic structure of pyrite has been studied using self consistent density functional theory within the local density approximation (LDA). The optimum bulk geometry is in good agreement with crystallographic data. The calculated band structure and density of states in the region around the Fermi energy show that valence band maximum (VBM) is at X (100), and the conduction band minimum (CBM) is at G (000). The indirect and direct band gaps are 0.6?eV and 0.74?eV, respectively. The calculated contour map of difference of charge density shows excess charge in nonbonding d electron states on the Fe sites. The density increases between sulfur nuclei and between iron and sulfur nuclei qualitatively reveal that S-S bond and Fe-S bond are covalent binding.
The equilibrium geometry and electronic structure of pyrite has been studied using self-consistent density-functional theory within the local density approximation (LDA). The optimum bulk geometry is in good agreement with crystallographic data. The calculated band structure and density of states in the region around the Fermi energy show that valence-band maximum (VBM) is at X (100), and the conduction-band minimum (CBM) is at G (000). The indirect and direct band gaps are 0.6 eV and 0.74 eV, respectively. The calculated contour map of difference of charge density shows excess charge in nonbonding d electron states on the Fe sites. The density increases between sulfur nuclei and between iron and sulfur nuclei qualitatively reveal that S-S bond and Fe-S bond are covalent binding.
出处
《中国有色金属学会会刊:英文版》
CSCD
2001年第4期583-586,共4页
Transactions of Nonferrous Metals Society of China
基金
Project ( 5 992 5 412 )supportedbytheNationalScienceFundingforDistinguishedYoungScholars