摘要
The microstructure and the strain fatigue dislocation substructure of 7075-RRA (Retrogression and Reaging) aluminum alloy have been studied by using transmission electron microscopy. From these, a competitive mechanism of cyclic microscopic softening/hardening is put forward to explain the relation between macroscopic cyclic stability behavior and microscopic substructure.
The microstructure and the strain fatigue dislocation substructure of 7075-RRA (Retrogression and Reaging) aluminum alloy have been studied by using transmission electron microscopy. From these, a competitive mechanism of cyclic microscopic softening/hardening is put forward to explain the relation between macroscopic cyclic stability behavior and microscopic substructure.