摘要
Wavelet transform is used to analyze the scaling rule of temperature data (passive scalar) in Rayleigh Bénard convection flow from two aspects. By utilizing the method of extended self similarity (ESS), one can find the obtained scaling exponent agrees well with the one obtained from the temperature data in a experiment of wind tunnel. And then we propose a newly defined formula based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data. The obtained results demonstrate that we can correctly extract ξ(q) by using the method which is named as wavelet transform maximum modulus (WTMM).
Wavelet transform is used to analyze the scaling rule of temperature data (passive scalar) in Rayleigh Bénard convection flow from two aspects. By utilizing the method of extended self similarity (ESS), one can find the obtained scaling exponent agrees well with the one obtained from the temperature data in a experiment of wind tunnel. And then we propose a newly defined formula based on wavelet transform, and can determine the scaling exponent ξ(q) of temperature data. The obtained results demonstrate that we can correctly extract ξ(q) by using the method which is named as wavelet transform maximum modulus (WTMM).