摘要
The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damage-accumulating model to describe the failure delay in the interior of Materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.
The failure wave phenomenon was interpreted in glass media under the high velocity impact with the stress levels below the Hugoniot elastic limit. In view of the plate impact experimental observations a damage-accumulating model predominated by the deviatoric stress impulse was proposed while Heaviside function was adopted in the damage-accumulating model to describe the failure delay in the interior of Materials. Features of the failure layer and propagation mechanism as well as their dynamic characteristics were further presented. The reduction in failure wave propagation speed is pointed out as the reflected rarefaction waves reflect again from the failure layer boundary.
基金
theDefenseScienceTechnologyKeyLabFoundationofChina ( 99JS75.2 2JN2 0 0 1 )