摘要
The numerical simulation experiment of climate at Last Glacial Maximum (LGM.21 ka BP) in China is made by using an atmospheric general circulation model (AGCM) coupled with land surface processes (AGCM+SSiB) and earth orbital parameters and boundary forcing conditions at 21 ka.The modeled climate features are compared with reconstructed conditions at 21 ka from paleo-lake data and pollen data.The results show that the simulated climate conditions at 21 ka in China are fairly comparable with paleo-climatological data.The climate features at 21 ka in China from the experiment are characterized by a drier in the east and a wetter in the west and in the Tibetan Plateau as well.According to the analysis of distribution of pressure and precipitation,as well as the intensity of atmospheric circulation at 21 ka,monsoon circulation in eastern Asia was significantly weak comparing with the present.In the Tibetan Plateau,the intensity of summer monsoon circulation was strengthened,and winter monsoon was a little stronger than the present. The simulation with given forcing boundary conditions,especially the different vegetation coverage,can reproduce the climate condition at the LGM in China,and therefore provides dynamical mechanisms on the climate changes at 21 ka.
The numerical simulation experiment of climate at Last Glacial Maximum (LGM.21 ka BP) in China is made by using an atmospheric general circulation model (AGCM) coupled with land surface processes (AGCM+SSiB) and earth orbital parameters and boundary forcing conditions at 21 ka.The modeled climate features are compared with reconstructed conditions at 21 ka from paleo-lake data and pollen data.The results show that the simulated climate conditions at 21 ka in China are fairly comparable with paleo-climatological data.The climate features at 21 ka in China from the experiment are characterized by a drier in the east and a wetter in the west and in the Tibetan Plateau as well.According to the analysis of distribution of pressure and precipitation,as well as the intensity of atmospheric circulation at 21 ka,monsoon circulation in eastern Asia was significantly weak comparing with the present.In the Tibetan Plateau,the intensity of summer monsoon circulation was strengthened,and winter monsoon was a little stronger than the present. The simulation with given forcing boundary conditions,especially the different vegetation coverage,can reproduce the climate condition at the LGM in China,and therefore provides dynamical mechanisms on the climate changes at 21 ka.
基金
Supported by"Hundred Talents Project"from Chinese Academy of Sciences(CAS 1998-0019)
from the National Natural Science Foundation of China(49971075)
"Creative Project"from Lake Sediment and Environment Laboratory(C200289)