期刊文献+

蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例 被引量:155

Configuration of Parameters α,β,ρ in Ant Algorithm
下载PDF
导出
摘要 以TSP问题为例 ,对蚁群算法中参数α、β、ρ的作用作了理论上的研究 ,同时对最优的参数配置问题作了分析。在保证获得解的前提下 ,为了提高计算速度 ,对基本蚁群算法中的选择路线策略进行了调整。通过实例计算表明 ,这种调整是切实可行的 ,有较好的实用价值。 This paper studies and analyses the function and influence of parameter α,β,ρ in the three models of ant algorithm theoretically, taking TSP as an example. The computational results of oliver 30 city shows that the analysis on the three parameters is rational. Furthermore, we study the optimum configuration of the parameters. To improve the efficiency of the algorithm, we present to amend the strategy of choice used to decide the next city and propose a new method and a group of optimum parameters. Experimental results indicate that the change is practical and valuable.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2004年第7期597-601,共5页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目 ( 4 0 2 710 94)
关键词 蚁群算法 旅行商问题 参数配置 ant algorithm traveling salesman problem(TSP) optimum configuration
  • 相关文献

参考文献5

二级参考文献20

  • 1[1]Colorni A.Distributed optimization by ant coloni es[R].Proc.of 1st European Conf.Artificial Life.
  • 2[2]Dorigo M,Gianni Di Caro,Thomas Stutzle.Ant algorithms[J].Fut ure Generation Compuer System,2000,16:5-7.
  • 3[3]Dorigo M Luca,Maria Gamberdella.Ant colony for the traveling s alesman problem[R].TR,IRIDIA,1996.
  • 4[4]Dorigo M,Vittorio Maniezzo,Alberto Colorni.The Ant System:optim ization by a colony of cooperating agents[J].IEEE Transactions on systems,Man, and Cybernetics_Part B,1996,26(1):1-13.
  • 5[5]Thomas Stützle,Holger H Hoos.MAX-MIN Ant System[J].Futur e Generation Computer System,2000,16:889-914.
  • 6[6]Dorigo M.Heuristic from nature for hard combinatorial optimizat ion problems[J].International Transactions in operational research.,3(1):1-2 1.
  • 7[7]Gambardella L M,Taillard E D,Dorigo M.Ant colonies for the qua dratic assignment problem[J].Journal of the Operational Research Society 1999 ,50(2):167-176.
  • 8[8]Gambardella,Luca Maria,Dorigo M.Solving symmetric and asymmetr ic TSPs by and colonies[R].Proceedings of the IEEE Conference on Evolutionary Computation 1996,137-142.
  • 9[9]Dorigo M,Luca Maria Gamberdella.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[R].TR,IRIDIA,1996.
  • 10[10]Walter J,Gutjahr.AGraph_based Ant System and its convergence[ J]:Future Generation Computer System,2000,16:837-888.

共引文献62

同被引文献1095

引证文献155

二级引证文献966

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部