摘要
We consider the random field estimation problem with parametric trend in wireless sensor networks where the field can be described by unknown parameters to be estimated. Due to the limited resources, the network selects only a subset of the sensors to perform the estimation task with a desired performance under the D-optimal criterion. We propose a greedy sampling scheme to select the sensor nodes according to the information gain of the sensors. A distributed algorithm is also developed by consensus-based incremental sensor node selection through information quality computation for and message exchange among neighboring sensors. Simulation results show the good performance of the proposed algorithms.
We consider the random field estimation problem with parametric trend in wireless sensor networks where the field can be described by unknown parameters to be estimated. Due to the limited resources, the network selects only a subset of the sensors to perform the estimation task with a desired performance under the D-optimal criterion. We propose a greedy sampling scheme to select the sensor nodes according to the information gain of the sensors. A distributed algorithm is also developed by consensus-based incremental sensor node selection through information quality computation for and message exchange among neighboring sensors. Simulation results show the good performance of the proposed algorithms.
基金
supported by the National Natural Science Foundation of China-Key Program (No. 61032001),the National Natural Science Foundation of China (No. 60828006)