期刊文献+

具有脉冲扩散的单种群模型的研究

Research for a Single Species Model with Impulsive Diffusion
原文传递
导出
摘要 本文讨论了在两个斑块上具有脉冲扩散的单种群模型,证明了在适当条件下系统是一致持久的,并利用单调凸算子理论,得到了系统存在唯一全局渐近稳定的周期解,利用数值模拟进一步证明了所得的结论。 In this paper we propose a single species model with impulsive diffusion between two patches,We obtain uniform persistence under certain conditions,By using the discrete dynamical system generated by a monotone,concave map for the dispersal model we prove that the Poincare map has a globally stable positive fixed point.This implies that the system has a globally stable positive periodic solution.This result is further substantiated by numerical Simulation.
作者 徐国明
出处 《阴山学刊(自然科学版)》 2011年第1期5-8,共4页 Yinshan Academic Journal(Natural Science Edition)
基金 包头师范学院校内项目(BSY200911018)
关键词 脉冲扩散 一致持久 周期解 全局稳定 impulsive diffusion uniform persistence periodic solution globally stable
  • 相关文献

参考文献8

  • 1徐国明,贾建文.一类具有非线性扩散和时滞的捕食系统的持续性与周期解[J].系统科学与数学,2010,30(4):515-529. 被引量:3
  • 2Zhidong Teng,Zhengyi Lu.The effect of dispersal on single-species nonautonomous dispersal models with delays[J]. Journal of Mathematical Biology . 2001 (5)
  • 3Global stability and predator dynamics in a model ofprey dispersal in a patchy environment. Nonlinear Analysis Theory Methods Applications . 1989
  • 4Z.Zhang,Z.Wang.Periodic solution for a two-species non-autonomous competition Lotka-Volterra patch system withtime delay. J,.Math.Anal.Appl . 2002
  • 5Zhidong Teng,Lansun Chen.Permanence and extinction of periodic predator-preysystems in a patchy environment with delay. Nolinear Analysis:Real World Applications . 2003
  • 6Jingan C,Chen L.Permanence and Extinction in Logistic and Lotka-Volterra Systems with Diffusion. Journal of Mathematical . 2001
  • 7Smith H L.Cooperative systems of differential equations with concave nonlinearities. Nonlinear Analysis Theory Methods Applications . 1986
  • 8Skellem J D.Random dispersal in theoretical population. Biometrika . 1951

二级参考文献10

  • 1Freedman H I, Waltman P. Mathematical models of population interaction with dispersal I: Stability of habitats with and without a predator. SIAM J. Appl. Math., 1997, 32: 631-648.
  • 2Freedman H I, Rai B, Waltman P. Mathematical models of population interaction with dispersal II: Differential survival in a change of habitat. J. Math. Anal. Appl., 1986, 115: 140-154.
  • 3Cui J, Chen Lansun. The effect of diffusion on the time varying Logistic population growth. Comput. Math. Appl., 1998, 36: 1-9.
  • 4Song X, Chen Lansun. Persistence and global stability for nonautonomous predator-prey system with diffusion and time delay. Comput. Math. Appl., 1998, 35: 33-40.
  • 5Dou Jiawei, Chen Lansun. Persistence and Global Stability for a Kind of Nonautonomous Competition System with Time Delay. World Scientific Press, Singapore, 1998.
  • 6Allen L J. Persistence and extinction in single species reaction diffusion models. Bull. Math. Biol., 1983, 45: 209-227.
  • 7Zhou X, Shi X, Song X. Analysis of nonautonomous predator-prey model with nonlinear diffusion and time delay. Appl. Math. Comput., 2008, 15(1): 129-136.
  • 8Zhang X, Chen Lansun. The linear and nonlinear diffusion of the competitive Lotka-Volterra model. Nonlinear Analysis, 2007, 66: 2767-2776.
  • 9Teng Zhidong. Nonautonomous Lotka-Volterra system with delays. Journal of Differential Equa- tions, 2002, 179: 538-561.
  • 10Kuang Y. Delay Differential Equation with Application in Population Dynamics. Academic Press, New York, 1993.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部