摘要
用km,n表示完全二部图,用Km,n\e表示完全二部图km,n去掉一条边e,先建立Km,n\e的一个好画法得到其交叉数的上界,再证明这个上界确实是K3,n\e和K4,n\e的交叉数,K3,n\e的交叉数为z(3,n)-「n/2」+1,K4,n\e的交叉数为z(4,n)-「n/2」+1.
Let km,ndenote the complete bipartite graph,and km,n\e denote the graph km,n obtained by deleting one edge.This paper finds out the upper bound of the crossing number by establishing a good drawing of km,n\e,then proves that this upper bound is the crossing number of k3,n\e and k4,n\e,and the crossing number of k3,n\e and k4,n\e is respectively z(3,n)-「n/2」+1 and z(4,n)-「n/2」+1.
出处
《河南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2011年第2期24-26,共3页
Journal of Henan Normal University(Natural Science Edition)
基金
湖南省教育厅课题(10C0831)
关键词
完全二部图
交叉数
画法
the complete bipartite graph
crossing number
drawing