摘要
This paper brings forward a novel dynamic multiple access network selection scheme(NDMAS),which could achieve less energy loss and improve the poor adaptive capability caused by the variable network parameters.Firstly,a multiple access network selection mathematical model based on information theory is presented.From the perspective of information theory,access selection is essentially a process to reduce the information entropy in the system.It can be found that the lower the information entropy is,the better the system performance fulfills.Therefore,this model is designed to reduce the information entropy by removing redundant parameters,and to avoid the computational cost as well.Secondly,for model implementation,the Principal Component Analysis(PCA) is employed to process the observation data to find out the related factors which affect the users most.As a result,the information entropy is decreased.Theoretical analysis proves that system loss and computational complexity have been decreased by using the proposed approach,while the network QoS and accuracy are guaranteed.Finally,simulation results show that our scheme achieves much better system performance in terms of packet delay,throughput and call blocking probability than other currently existing ones.
This paper brings forward a novel dynamic multiple access network selection scheme(NDMAS),which could achieve less energy loss and improve the poor adaptive capability caused by the variable network parameters.Firstly,a multiple access network selection mathematical model based on information theory is presented.From the perspective of information theory,access selection is essentially a process to reduce the information entropy in the system.It can be found that the lower the information entropy is,the better the system performance fulfills.Therefore,this model is designed to reduce the information entropy by removing redundant parameters,and to avoid the computational cost as well.Secondly,for model implementation,the Principal Component Analysis(PCA) is employed to process the observation data to find out the related factors which affect the users most.As a result,the information entropy is decreased.Theoretical analysis proves that system loss and computational complexity have been decreased by using the proposed approach,while the network QoS and accuracy are guaranteed.Finally,simulation results show that our scheme achieves much better system performance in terms of packet delay,throughput and call blocking probability than other currently existing ones.
基金
supported by National Natural Science Foundation of China under Grant No.60971083
National International Science and Technology Cooperation Project of China (No.2010DFA11320)