期刊文献+

基于一类高阶微分方程的周期解的存在性研究

The existence of periodic solution based on high-order differential equation
原文传递
导出
摘要 一直以来,非线性微分方程的周期解的存在唯一性一直是研究的热点之一,在许多领域都有着十分广泛的应用。特别是一类高阶非线性微分方程,由于涉及领域广泛而倍受人们关注。该文讨论Schauder不动点方法,以及非线性泛函分析中的锥拉伸锥压缩方法,研究了微分方程的周期解的存在性问题。 For a long time,the existence of periodic solution of nonlinear differential equation is always one of the hot researches,have a very wide range of applications in many areas.Especially high-order nonlinear differential equation,attracts people's attention due to the extensive field.In this paper,we discuss the Schauder fixed point method,and the method of the compression and expansion of cone in nonlinear functional analysis,to discuss the existence of periodic solution of differential equations.
作者 胡彦明
出处 《佳木斯教育学院学报》 2011年第7期59-59,61,共2页 Journal of Jiamusi Education Institute
关键词 微分方程 周期解 存在性 differential equation periodic solution existence
  • 相关文献

参考文献2

二级参考文献8

  • 1王铎.周期扰动的非保守系统的2π周期解[J].数学学报,1983,(1983):341-353.
  • 2Lazer A C, Landesman E M, Meyer D R. On saddle point problems in the calculus of variations, the Ritz algorithm and monotone convergence[J]. J Math Anal Appl, 1975, 52: 594-614.
  • 3Manasevich R F. A min max theorem[J]. J Math Anal Appl, 1982, 90: 64-71.
  • 4Manasevich R F. A nonvariational version of a max-min principle[J]. Nonlinear Anal, 1983, 7: 565-570.
  • 5李树杰 冯德兴.共振下一类常微分方程组周期解的惟一存在性[J].系统科学与数学,1986,6:241-246.
  • 6Li Weiguo, Li Hongjie. A min-max theorem and its applications to nonconservative systems[J]. Inter J Math Math Sci, 2003, 17: 1101-1111.
  • 7Lazer A C. Application of a lemma on bilinear forms to a problem in nonlinear oscillations[J]. Proc Am Math Soc, 1972, 33: 89-94.
  • 8黄文华,沈祖和,刘曾荣.Duffing型方程组的边界值问题的解的存在性[J].应用数学和力学,2000,21(8):875-880. 被引量:5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部