期刊文献+

带权的Ginzburg-Landau型泛函的径向极小元零点分布研究

With the right type of Ginzburg-Landau functional of the radial distribution of very small element zero
原文传递
导出
摘要 本文主要是讨论带权的Ginzburg-Landau型泛函的径向极小元零点分布问题,通过一系列的讨论和证明,最终描述出带权的Ginzburg-Landau型泛函的径向极小元的零点集中分布在原点和权函数的零点附近。 This paper is to discuss with the right of Ginzburg-Landau type functional distribution of the radial minimizer zero problems,through a series of discussions and that,eventually with the right to describe the Ginzburg-Landau type functional of the radial minimizer of zero at the origin and concentrated near zero weighting function.
作者 韩海燕
出处 《佳木斯教育学院学报》 2011年第8期56-57,共2页 Journal of Jiamusi Education Institute
关键词 GINZBURG-LANDAU型泛函 零点分布 径向极小元 坏球 Ginzburg-Landau type functional zero distribution radial minimizer balls
  • 相关文献

参考文献9

  • 1韩海燕,雷雨田.带权的Ginzburg-Landau型泛函的径向极小元唯一性研究[J].廊坊师范学院学报(自然科学版),2011,11(5):22-23. 被引量:3
  • 2Dmitry Golovaty,Leonid Berlyand.On uniqueness of vector-valued minimizers of the Ginzburg-Landau functional in annular domains[J]. Calculus of Variations and Partial Differential Equations . 2002 (2)
  • 3Fabrice Bethuel,Haim Brezis,Frédéric Hélein.Asymptotics for the minimization of a Ginzburg-Landau functional[J]. Calculus of Variations and Partial Differential Equations . 1993 (2)
  • 4C.Lefter,V.Radulescu.Asymptotics for the minimizers ofthe Ginzburg-Landau energy with a vanishing weight. Adv.Math.Sci.Appl . 1997
  • 5Bethuel F,,Brezis H,Helein F.Ginzburg-Landau Vortices. . 1994
  • 6Herve R M,Herve M.Etude qualitative des solutions reelles D’ une equation differentielle Liee a L’ equation de Ginburg-Landau. Ann IHP Anal Nonline . 1994
  • 7Mironescu P.On the stability of radial solution of the Ginzburg-Landau equation. Journal of Functional Analysis . 1995
  • 8Struwe M.On the asymptotic behaviour of minimizers of the Ginzburg-Landau model in 2-dimemsions. Differential and Integral Equations . 1994
  • 9Herve R,Herve M.Etude Qualitative des Solutions Rreelles d’une Equation Differentielle Liee aL’equation de Ginburg-Landau.Ann. IHP Anal. NonLine . 1994

二级参考文献10

  • 1F. Bethuel, H. Brezis, F. Helein. Ginzburg-LandauVortices, Birkhauser. 1994.
  • 2M. Struwe. On the asymptotic behavior ofminimizers of the Ginzburg-Landau model in2-dimensions , Diff. and Int..Equa.,1994,7:1613 - 1624.
  • 3M. C. Hong. On a problem of Bethuel, Brezis and Helein concerning the Ginzburg-Landau functional, C. R. Acad. Sci. Paris, 1995,320: 679 - 684.
  • 4P. Mironescu. On the stability of radial solution of the Ginzburg-Landau equation, J. Functional Analysis., 1995, 130:334 - 344.
  • 5V. Akopian, A. Farina. Sur les solutions radials de 1' equation- △u = u(1- l ul)2 dans RN(n≥3),C.R. Acad. Sci. Parist., 1997,325 : 601 - 604.
  • 6A. Farina, M. Guedda. Qualitative study of radial solutions of the Ginzburg-Landau system in R^N ( n ≥ 3 ), Appl. Math. Letters, 2000, 13(7) :59 - 64.
  • 7F. Bethuel, H. Brezis, F. Helein. Asymptotics for the minimization of a Ginzburg-Landau functional, Calc. Var. PDE., 1993,1 : 123 - 138.
  • 8D. Golovaty, L. Berlyand. On uniqueness of vector-value minimizers of the Ginzburg-Landau functional in annular domains, Calc. Var. PDE., Vol. 2002,14:213 - 232.
  • 9R. M. Herve, M. Herve. Etude qualitative des solutions reelles d' une equation dif-ferentielle liee a 1' equation de Ginburg-Landau, Ann. IHPAnal. nonLine., 1994, 11 : 427 - 440.
  • 10P. Fife, L. Peletier. On the location of defects in stationary solutions of the Ginzburg-Landau equation, Quart. Appl. Math., 1996,54:85 - 104.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部