期刊文献+

油气减振器非线性特性的神经网络识别研究 被引量:1

Identification of Nonlinear Characteristics of Hydragas Using Neural Networks
下载PDF
导出
摘要 用神经网络的非线性逼近能力 ,设计了用于识别油气减振器非线性特性的结构化神经网络模型 ,并介绍了该模型的具体应用方法 ,即利用试验数据组成学习样本 ,对网络模型进行训练 ,识别出其非线性特性。识别结果表明 ,结构化神经网络可有效地识别油气减振器的非线性特性。 Based on the characteristics of neural networks, a structural neural networks model was designed to identify the nonlinear characteristics of hydragas in the paper. The identification method of nonlinear characteristics was also introduced. With the test data of one type hydragas as studying samples, the neural network model was trained and the nonlinear characteristics was identified. The results showed that the structural neural network was a valid method to identify the model of hydragas.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2004年第4期9-11,共3页 Transactions of the Chinese Society for Agricultural Machinery
基金 .NULL.
关键词 油气减振器 非线性特性 神经网络 识别 被动减振装置 Hydragas, Nonlinear characteristics, Neural networks, Identification
  • 相关文献

参考文献5

  • 1Moulton A E, Best A. Hydragas suspension. SAE 790374,1979:1307-1329
  • 2Koenraad Reybtouck. A nonlinear parametric model of an automotive shock absorber. SAE940869,1994.1170~1177
  • 3Belingardi G, Campanile P. Improvement of the shock absorber dynamic simulation by the restoring force mapping method. Processing of the 15th International Seminar on Modal Analysis, Heverlee, Belgium,1990.441~454
  • 4Masri S F. Identification of nonlinear dynamic systems using neural networks. Journal of Applied Mechanic, Transactions of the ASME,1993,60(2):123~133
  • 5张立明. 人工神经网络的模型及其应用. 上海:复旦大学出版社,1993.

同被引文献20

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部