期刊文献+

QUASILINEAR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT AND HARDY TERM 被引量:1

QUASILINEAR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT AND HARDY TERM
原文传递
导出
摘要 This paper is concerned with a p-Laplacian elliptic problem with critical Sobolev-Hardy exponent and Hardy term. By variational methods and genus theory, we guarantee that this problem has at least one positive solution and admits many solutions with negative energy under sufficient conditions. This paper is concerned with a p-Laplacian elliptic problem with critical Sobolev-Hardy exponent and Hardy term. By variational methods and genus theory, we guarantee that this problem has at least one positive solution and admits many solutions with negative energy under sufficient conditions.
出处 《Annals of Differential Equations》 2008年第4期436-442,共7页 微分方程年刊(英文版)
基金 Supported by the Natural Science Foundation of China (10471052).
关键词 QUASILINEAR GENUS multiple solutions positive solution quasilinear genus multiple solutions positive solution
  • 相关文献

参考文献9

  • 1J. L. Vázquez.A Strong Maximum Principle for some quasilinear elliptic equations[J].Applied Mathematics & Optimization.1984(1)
  • 2H.Z. Xie,S.L. Li,H.R. Pi.Multiplicity of solutions for elliptic problems with critical Hardy-Sobolev exponents[].J Huazhong Normal University.2008
  • 3Garcia Azorero,J. P.,Peral Alonso,I.Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[].Transactions of the American Mathematical Society.1991
  • 4Caffarelli L,Kohn R,Nirenberg L.First order interpolation inequality with weights[].Composition Math.1984
  • 5Ghoussoub,N.,Yuan,C.Multiple solutions for quasilinear PDEs involving critical Sobolev and Hardy exponents[].Transactions of the American Mathematical Society.2000
  • 6Kang D.On the quasilinear elliptic problems withcritical Sobolev-Hardy exponents and Hardy terms[].Nonlinear Analysis.2008
  • 7P. Rabinowitz.Minimax Methods in Critical Point Theory with Applications to Differential Equations[].CBMS.1985
  • 8M. Willem.Minimax Theorems[]..1996
  • 9Chen J Q.Some further results on a semilinear equation with concave-convex nonlinearity[].Nonlinear AnalysisTMA.2005

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部