期刊文献+

EXISTENCE AND UNIQUENESS OF ALMOST PERIODIC SOLUTION TO A SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION

EXISTENCE AND UNIQUENESS OF ALMOST PERIODIC SOLUTION TO A SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION
原文传递
导出
摘要 In this paper, the existence of almost periodic solution to a second order nonlinear equation is investigated by contraction mapping principle under some conditions. It ought to be noted that using Schauder fixed point theorem to discuss such a problem will cause a failure. In this paper, the existence of almost periodic solution to a second order nonlinear equation is investigated by contraction mapping principle under some conditions. It ought to be noted that using Schauder fixed point theorem to discuss such a problem will cause a failure.
出处 《Annals of Differential Equations》 2010年第4期457-464,共8页 微分方程年刊(英文版)
基金 supported by the Foundation of Fujian Education Bureau(JB08029)
关键词 Linard equation almost periodic solution contraction mapping principle Linard equation almost periodic solution contraction mapping principle
  • 相关文献

参考文献9

  • 1周伟灿,许敏.非共振条件下Liénard型方程周期解的存在性[J].工程数学学报,2006,23(5):931-934. 被引量:2
  • 2史金麟.周期系数二阶线性微分方程的稳定性[J].数学物理学报(A辑),2000,20(1):130-139. 被引量:9
  • 3J.L.Shi.The solution structure of second order linear differential equations with almost peri-odic coefficient. PanAmerican Mathematical Journal . 1999
  • 4Lin Fa-xing.The existence of periodic solutions and almost periodic solutions of Lienard equation. Acta Mathematica . 1996
  • 5R.P.Agarwal,Ch G Philos,P.Ch Tsamatos.Global solutions of a singular initial value problem to second order nonlinear delay differential equations. Mathematics and Computer Modelling . 2006
  • 6Niksirat M A,Mehri B.On the existence of positive solution for second-order multi-points boundary value problems. Journal of Computational and Applied Mathematics . 2006
  • 7Coppel W A.Dichotomies in stability theory. Lecture Notes in Mathematics . 1978
  • 8Hale J K.Ordinary Differential Equations. . 1980
  • 9K. Wang.Almost Periodic Solutions of Forced Line′nard Equations. Chinese J.Contemp. Math . 1995

二级参考文献14

  • 1赵瑞星.对称不稳定的非线性问题和对称型重力惯性波的非线性周期解[J].大气科学,1994,18(4):437-441. 被引量:2
  • 2Lassoued L. Periodic solutions of a second order superquadratic systems with a change of sign in the potential[J]. J Diff Equs, 1991,93:1-18
  • 3Gossez J P, Omari P. Periodic solutions of a second order ordinary differential equation: A necessary and sufficient condition for nonresonance[J]. 1991,94:67-82
  • 4Nieto J J. Nonlinear second-order periodic boundary value problems[J]. J Math Anal Appl, 1988,130:22-27
  • 5Shen Zuhe. On the periodic solution to the Newtonian equation of motion[J]. Nonlinear Analysis, TMA,1989,13(2):145-149
  • 6Shen Zuhe, Wolfe M A. On the existence of periodic solutions of periodically perturbed conservative systems[J]. J Math Anal Appl, 1990,153(1):78-83
  • 7FengYanqing ShenZuhe.An existence theorem for periodically perturbed conservative systems[J].南京大学学报:数学半年刊,2004,21(2):206-212.
  • 8Adams R A. Sobolev Space[M]. New York: Academic Press, 1975
  • 9Dunford N, Schwartz J T. Linear Operators, Volume Ⅱ[M]. New York: Interscience, 1963
  • 10Zampieri G. Diffeomorphiams with Banach Space Domains[J]. Nonlinear Analysis, 1992,19:923-932

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部