期刊文献+

ON THE GROWTH OF SOLUTIONS TO HIGHER ORDER DIFFERENTIAL EQUATION 被引量:1

ON THE GROWTH OF SOLUTIONS TO HIGHER ORDER DIFFERENTIAL EQUATION
原文传递
导出
摘要 In this paper, we consider a higher order differential equation and obtain a precise estimate of the order of growth and the hyper-order of solutions to the equation. In this paper, we consider a higher order differential equation and obtain a precise estimate of the order of growth and the hyper-order of solutions to the equation.
出处 《Annals of Differential Equations》 2012年第2期170-179,共10页 微分方程年刊(英文版)
基金 supported by the Natural Science Foundation of Jiangxi Province(No.20114BAB211003)
关键词 differential equation entire function order of growth HYPER-ORDER differential equation entire function order of growth hyper-order
  • 相关文献

参考文献7

  • 1陈宗煊,孙光镐.ON THE GROWTH OF SOLUTIONS OF A CLASS OF HIGHER ORDER DIFFERENTIAL EQUATIONS[J].Acta Mathematica Scientia,2004,24(1):52-60. 被引量:28
  • 2YANG Le.Value Distribution Theory and New Research[]..1982
  • 3Yi HX,Yang CC.The Uniqueness Theory of Meromorphic Functions[]..1995
  • 4Gundersen G.Finite Order Solutions of Second Order Linear Differential Equations[].Transactions of the American Mathematical Society.1988
  • 5He Yuzan,Xiao Xiuzhi.Algebroid functions and ordinary differential equations[]..1988
  • 6Valiron G.Lectures on the General Theory of Integral Functions[]..1949
  • 7Zongxuan Chen.The growth of solutions of the differential equation f′′ + e zf′ + Q (z)f = 0[].Science in China.2001

二级参考文献16

  • 1Hayman W. Meromorphic Function. Oxford: Clarendon Press, 1964.
  • 2Yang Lo. Value Distribution Theory and New Research. Beijing: Science Press, 1982(in Chinese).
  • 3Yi Hongxun, Yang Chungchun. The Uniqueness Theory of Meromorphic Functions. Beijing: Science Press, 1995 (in Chinese).
  • 4Hille E. Ordinary Differential Equations in the Complex Domain. New York: Wiley, 1976.
  • 5Frei M. Uber die subnormalen losungen der differentialgleichung w″ + e^-Zw′ + (konst.)w = 0. Comment Math Helv, 1962, 36:1-8.
  • 6Ozawa M. On a solution of w″ + e^-Zw′ + (az + b)w = 0. Kodai Math J, 1980, 3: 295-309.
  • 7Gundersen G. On the question of whether f″+ e^-Zf′ + B(z)f = 0 can admit a solution f≠ 0 of finiteorder. Proc R S E, 1986, 102A: 9-17.
  • 8Langley J K. On complex oscillation and a problem of Ozawa. Kodai Math J, 1986, 9:430-439.
  • 9Amemiya I, Ozawa M. Non-existence of finite order solutions of w″+ e^-Zw′+ Q(z)w = 0. Hokkaido Math J, 1981, 10:1-17.
  • 10Chen Zongxuan. The growth of solutions of the differential equation f″ + e^-Zf′ + Q(z)f = 0. Science in China (Series A), 2001, 31:775-784 (in Chinese).

共引文献27

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部