期刊文献+

四阶非局部边值问题方程组正解的存在性 被引量:3

Existence of positive solutions for nonlocal forth order boundary value problem systems
下载PDF
导出
摘要 利用锥上的Krasnoselskii不动点定理研究了一类具有积分边界条件的四阶非局部微分方程组边值问题正解的存在性。通过在Banach空间定义一个全连续的算子,得到了它至少存在1个正解的充分条件。 By using Krasnoselskii fixed point theorem in a cone,the existence of positive solutions for nonlocal forth order boundary value problem systems with integral boundary conditions is studied.By defining a completely continuous operator in a Banach space,the sufficient condition under which the above problem has at least one positive solution is derived.
出处 《河北科技大学学报》 CAS 2012年第3期197-201,206,共6页 Journal of Hebei University of Science and Technology
基金 国家自然科学基金资助项目(10971045) 河北省自然科学基金资助项目(A2009000664)
关键词 正解 非局部边值问题 KRASNOSELSKII不动点定理 positive solution nonlocal boundary value problem Krasnoselskii fixed point theorem
  • 相关文献

参考文献7

  • 1BAI Z B. Positive solutions of some nonlocal fourth-order boundary value problem[J].Applied Mathematics and Computation,2010.4191-4197.doi:10.1016/j.amc.2009.12.040.
  • 2BAI Z B. The method of lower and upper solution for a bending of an elastic beam equation[J].Journal of Mathematical Analysis and Applications,2000,(1):195-202.doi:10.1006/jmaa.2000.6887.
  • 3BAI Z B. The method of lower and upper solution for some fourth-order boundary value problems[J].Nonlinear Analysis,2007,(6):1704-1719.doi:10.1016/j.na.2006.08.009.
  • 4FENG H Y,JI D H,GE W G. Existence and uniqueness of solutions for a fourth-order boundary value problem[J].Nonlinear Analysis,2009.3561-3566.
  • 5LI Y X. Positive solutions for nonlocal boundary value problems[J].Nonlinear Analysis,2003.1069-1078.
  • 6YAO Q L. Local existence of multiple positive solutions to a singular cantilever beam eqution[J].Journal of Mathematical Analysis and Applications,2010.138-154.doi:10.1016/j.jmaa.2009.07.043.
  • 7ZHAO J F,GE W G. Positive solutions for a higher-order four-point boundary value problem with a p-Laplacian[J].Computers and Mathematics with Applications,2009.1103-1112.

同被引文献36

  • 1刘玉敬,郭少聪,郭彦平.带有积分边值条件的三阶边值问题正解的存在性[J].河北科技大学学报,2012,33(2):93-96. 被引量:5
  • 2WANG Hai-yan.Positive periodic solutions for functional differential equations[J].J Differential Equations,2004,202(26):615-627.
  • 3CHU J,TORRES P J,ZHANG M.Periodic solutions of second order non-autonomous singular dynamical systems[J].J DifferentialEquations,2007,239(1):196-212.
  • 4YU J,GUO E.Multiplicity results for periodic solutions to delay differential equations via critical point theory[J].J Differential Equa-tions,2005,218(1):15-35.
  • 5DONG Shi-jie,GE Wei-gao.Positive solutions for quasilinear second order differential equation[J].Applicable Analysis,2005,84(12):1 221-1 229.
  • 6MA Ru-yun,MA Hui-li.Positive solutions of nonlinear discrete periodic boundary value problems[J].Comput Math Appl,2010,59(1):136-141.
  • 7ATICI F M,GUSEINOV G S.Positive periodic solutions for nonlinear difference equations with periodic coefficients[J].J Math AnalAppl,1999,232:166-182.
  • 8RABINOWITZ P H.Some global results for nonlinear eigenvalue problems[J].J Funct Anal,1971,7:487-513.
  • 9AGARWAL R P,O'REGAN D. Infinite Interval Problems for Differential,Difference and Integal Equations[M].Dordrecht,the Netherlands:Kluwer Academic Publishers,2001.
  • 10AGARWAL R P,O'REGAN D. Nonlinear boundary value problems on the semi-infinite interval:An upper and lower solution approach[J].Mathematika,2002.129-140.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部