期刊文献+

偏好语境下的序逻辑 被引量:1

Ordering logic in the context of preference
下载PDF
导出
摘要 为了解决偏好逻辑语境中的先后关系问题,需要引入集合论中的序关系的概念,从而构成序逻辑.采用状态消减、关系变化和关系分割的方法,给出了序逻辑的公开宣告、字典序更新和偏好更新三个动态行动,更多的行动可以采用类似的方法进行分析,最基本的观点就是对基础语言的解释.序逻辑在动态偏好逻辑中具有重要的作用和意义. In order to solve the ordering relationship problem in the context of preference logic,the concept of ordering in set theory has been introduced to form a system of axiom order logic in this study.Three basic actions including public announcement,lexicographic upgrade and preference upgrade are created using state elimination,relation change and link cutting.More actions could be analyzed in a similar fashion while a basic view is to interpret basic language.Ordering logic plays an important role in dynamic preference logic.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2012年第3期425-428,共4页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金资助项目(61175055) 毕节学院基金资助项目(20111010)
关键词 公开宣告 字典序更新 偏好更新 归约公理 序逻辑 集合论 模态逻辑 动态行动 public announcement lexicographic upgrade preference upgrade reduction axioms ordering logic set theory modal logic dynamic action
  • 相关文献

参考文献9

  • 1Johan van Benthem. Dynamic logic for belief change[A].2007.89.doi:10.1111/j.1753-6405.2009.00337.x.
  • 2Karel Hrbacek,Thomas Jech. Introduction to set theory[M].Berlin:Academic press,2003.3-17.doi:10.3109/10253890.2011.560308.
  • 3Krister Segerberg. An essay in classical modal logic[M].Uppsala:Filosofiska Foreingen och Filosofiska Institutionen vid Uppsala Universitet,1971.263-332.
  • 4Patrick Blackburn,Maarten de Rijke,Yde Venerna. Modal Logic[M].Cambridge,uk:cambridge University Press,2001.89-259.
  • 5Hans van Ditmarsch,Barteld Pieter Kooi,Wiebe van der Hoek. Dynamic epistemic logic[M].Synthese Library:Springer press,2007.257-303.doi:10.1097/SMJ.0b013e31823353b0.
  • 6Johan van Benthem,Fenrong Liu. The dynamics of preference upgrade[J].Journal of Applied Non-Classical Logics,2007.45.doi:10.1007/s12185-010-0557-1.
  • 7Sten Lindstrom,Krister Segerberg. Modal logic and philosophy[A].Elsevier,2007.1149-1214.
  • 8Johan van Benthem,Sieuwert van Otterloo,Olivier Roy. Preference Iogic,conditionals,and solution concepts in games[M].Uppsala:Festschrift for Krister Segerberg.University of Uppsala,2005.1-12.
  • 9张家锋,徐扬,何星星.格值命题逻辑系统LP(X)的语义归结方法[J].辽宁工程技术大学学报(自然科学版),2011,30(4):611-614. 被引量:2

二级参考文献16

  • 1秦克云 徐扬.格值命题逻辑(Ⅱ).西南交通大学学报,1994,(2):22-27.
  • 2Robinson J P. A machine-oriented logic based on the resolution principle[J]. J. ACM, 1965,12(1):23-41.
  • 3刘叙华.一种新的语义归结原理-IDI-归结.吉林大学学报,1978,23(2):112-117.
  • 4Dusan G. On the refutational completeness of signed binary resolution and hyperresolution[J]. Fuzzy Sets and Systems, 2009,160(8): 1162 - 1176.
  • 5Ekaterina K. Sound and complete sld-resolution for bilattice-based annotated logic programs[J]. Electronic Notes in Theoretical Computer Science, 2009,225 ( 10): 141 - 159.
  • 6Xu Y, Ruan D, Kerre E E, et al. α - resolution principle based on lattice-valued propositional logic LP(X) [J]. Information Sciences, 2000,130(4): 195-222.
  • 7Xu Y, Ruan D, Kerre E E et al. α- resolution principle based on first-order lattice-valued logic LF(X)[J]. Information Sciences, 2001,132(4) :221-239.
  • 8周平,姜明,孙西芃.格值一阶逻辑系统LF(X)中带广义量词的α-归结原理[J].模糊系统与数学,2008,22(5):10-15. 被引量:6
  • 9闫林,刘清,庞善起.基于粒语义推理的粒归结研究[J].计算机科学,2009,36(1):171-176. 被引量:6
  • 10夏世芬,秦应兵,徐扬.格值命题逻辑系统中基于滤子的MP归结演绎[J].模糊系统与数学,2009,23(1):1-5. 被引量:8

共引文献1

同被引文献9

  • 1Benthem J F A K.Modal Logic and Classical Logic[M].Naples: Bibiliopolis Press,1983.
  • 2Sally Popkorn.First Steps in Modal Logic[M].Cambridge:Syndicate of the University of Cambridge Press,1994.
  • 3Hughes G E,Cresswell M J.An Introduction to Modal Logic[M].Methuen: Roufledge Press,1972.
  • 4Wallen L A.Automated Deduction in Nonclassical Logics[M].London:The MIT Press,1990.
  • 5Benthem J.Correspondence theory[C].Gabbay D,Guenthner F.Handbook of philosophical Logic.Springer Dordrecht Heidelberg London New York:Kuwer Academic Publishers,2001:325-408.
  • 6Benthem J.Minimal predicates,fixed points and definability[J].Joumal of Symbolic Logic,2005,70:696-712.
  • 7Benthem J.A New Modal Lindstrom Heorem[R].200606,Amsterdam: Institute for Logic,language and Computation of University of Amsterdam,2006.
  • 8Goldblatt R.Mathematical modal logic: a view of its evolution[J].Journal of Applied Logic,2003 ( 1):309-392.
  • 9任燕,王洪丽,鲁忠良.模糊逻辑的紧致性与模糊理论相容度[J].辽宁工程技术大学学报(自然科学版),2010,29(5):755-758. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部