期刊文献+

非马尔科夫环境下耦合超导量子系统纠缠演化的数值研究

Numerical Study of the Coupled Superconducting Quantum Entanglement Evolution in Non-Markovian Environment
原文传递
导出
摘要 基于耦合超导量子比特系统模型下,在非马尔科夫环境中利用共生纠缠的方法分析了耦合系统纠缠的产生及其动力学的演化。研究了不同初始纠缠态下的纠缠猝死(ESD)和纠缠再生(ESB)现象;主要分析了系统耦合强度、库的截止频率与系统的振荡频率间的比值、温度和约瑟夫森能级差对纠缠演化的影响。结果表明:系统纠缠取决于初始纠缠态和系统的耦合强度J,并且通过调节以上非马尔科夫环境的相干参数可以延长解纠缠时间来确保量子计算过程中的应用和量子信息的实现。 Based on the model of coupled superconducting quantum qubit systems,we analyze the entanglement generation and dynamics in non-Markovian regime by the concurrence method.We mainly analyze the effect of system coupling strength,ratio between the reservoir cutoff frequency and the system oscillator frequency,temperature and energy levels split of the superconducting circuit to the entanglement dynamics especially the phenomenon of entanglement sudden death(ESD) and sudden birth(ESB) with different initial states.It is shown that the concurrence is determined by the initial state and the coupling constant J of the system,the entanglement time can be prolonged by adjusting above coherence parameters in non-Markovian environment to ensure the achievement for the application in quantum computation and quantum information.
出处 《量子光学学报》 CSCD 北大核心 2012年第2期152-158,共7页 Journal of Quantum Optics
关键词 量子计算 量子纠缠 超导量子比特 非马尔科夫环境 quantum computation quantum entanglement superconducting quantum qubits non-Markovian environment
  • 相关文献

参考文献12

  • 1MICHAEL A,NIELSEN. Quantum Computation by measurement and quantum memory[J].Physics Letters A,2003.96-100.
  • 2NIELSE M A,CHUANG I L. Quantum Computation and Quantum Information[M].Cambride:Cambridge Univ Press,2000.
  • 3MAKHLIN Y,S G,S A. Quantum-state Engineering with Josephson-junction Devices[J].Reviews of Modern Physics,2001,(2):357-400.doi:10.1103/RevModPhys.73.357.
  • 4J Q Y,WANG X,TANAMOTO T. Efficient one-step Generation of Large Cluster States with Solid-state Circuits[J].Physical Review A,2007.052319.doi:10.1103/PhysRevA.75.052319.
  • 5CUI Wei,XI Zai-rong,PAN Yu. Non-Markovian Entanglement Dynamics in Coupled Superconducting Qubit Systems[J].European Physical Journal D:Atoms,Molecules and Clusters and Optical Physics,2010.479-485.
  • 6BREUER H P,PETRUCCIONE F. The Theory of Open Quantum Systems[M].Oxford:Oxford University Press,2002.
  • 7WISEMAN H M,GAMBETTA J M. Pure-state Quantum Trajectories for General Non-Markovian Systems do not Exist[J].Physical Review Letters,2008.140401.doi:10.1103/PhysRevLett.101.140401.
  • 8ZHANG Ying-jie,MAN Zhong-xiao,XIA Yun-jie. Non-Markovian Effects on Entanglement Dynamics in Lossy Cavities[J].European Physical Journal D:Atoms,Molecules and Clusters and Optical Physics,2009,(10):173-179.doi:10.1016/j.jada.2009.07.010.
  • 9MAN Zhong-xiao,ZHANG Ying-jie,SU Fang. Entanglement Dynamics of Multiqubit System in Markovian and Non-Markovian Reservoirs[J].European Physical Journal D:Atoms,Molecules and Clusters and Optical Physics,2010.147-151.doi:10.1097/NEN.0b013e318230b0f4.
  • 10CUI Wei,XI Zai-rong,PAN Yu. Optimal Decoherence Control in Non-Markovian Open Dissipative Quantum Systems[J].Physical Review A,2008.032117.doi:10.1309/AJCP9OFJN7FLTXDB.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部